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Foreword

Providing education to children is a fundamental right, and it’s essential for

the overall development of society. The Government of Telangana plays a crucial
role in ensuring that education is accessible to all, and they of ten establish institutions
like the Telangana Open School Society (TOSS) to cater to children who may be
unable to access formal education due to various reasons.

To provide quality education to learners studying Intermediate Educationin
Telangana Open School Society starting from the 2023 academic year, the text books
have been revised to align with the changing social situations and incorporate the
fundamental principles of the National Education Policy 2020. The guidelines set forth
in the policy aim to enhance theoverall learning experience and cater to the diverse
needs of the learners. Earlier Textbooks were just guides with questions and answers.
TOSS has designed the textbook with a student-centric approach, considering the
different learning styles and needs of learners. This approach encourages active
engagement and participation in the learning process. The textbooks include
supplementary teaching materials and resources to support educators in delivering
effective and engaging lessons.

This textbook of Mathematics is broadly divided into six modules : Algebra,
Coordinate Geometry, Three - dimensional Geometry, Trigonometry, Calculus, and
Statistics. Book 1 contains three modules. In the module Algebra students will learn
about Complex numbers, Quadratic equations, Matrices, and their applications. In
the module on coordinate geometry, students will be introduced to coordinates, various
forms of straight lines, circles, and conics. The module, three-dimensional geometry
contains planes and vectors. Understanding all these chapters is essential for a
comprehensive grasp of the subject.

We are indeed very grateful to the Government of Telangana and the Telangana
State Board of Intermediate Education. Special thanks to the editor, co-coordinator,
teachers, lecturers, and DTP operators who participated and contributed their services
tirelessly to write this textbook.

Date : .09.2023 Director,
Place : Hyderabad. TOSS, Hyderabad.
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In a Word with you

Welcome to the senior secondary course. It gives me great pleasure to know that you

Dear Learner

have opted for Mathematics as one of your subjects of study. Have you ever thought as
to why we study Mathematics? Can you think of a day when you have not counted something

or used mathematics? Probably not.

Mathematics is the base of human civilization. From cutting vegetables to arranging
books on the shelves, from tailoring clothe to motion of planets — mathematic applies
everywhere. In fact, everything we do in our daily is gerned bMathematics. Mathematics
can be broadly defined as the scientific study of quantities, including their relationships,
operations and their measurements, expressed by numbers and symbols. The Mathematicians
claim that the learning of Mathematics can be real fun. It only requires complete concentration

and love for Mathematics.

The present curriculum has six modules, namely algebra, coordinate geometry, Three
dimensional geometry, functions, calculus and statistics. There will be two books to cover

the six modules.

Volume 1 contains the three modules. In the module on algebra, you will be introduced
to mathematical induction, complex numbers, DeMoivre’s theorem, quadratic equations,
theory of equations,binomial theorem and various applications.This module also explains

how to solve a system of linear equations with the help of matrices and determinants.

The second module on coordinate geometry will introduce you to various forms of
straightlines, circles and conic sections.

The third module is on three dimensional geometry will introduce you to planes and

vectors.

We would suggest to you that you go through all the solved examples given in the
learning material and then try to solve independently all questions included in exercise and
practice exercise given at the end of each lesson.

If you face any difficulty, please do write to us. Your suggestions are also welcome.

Yours,
Yours Academic Officer
(Mathematics)
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Chapter

MATHEMATICAL INDUCTION

LEARNING OUTCOMES

After studying this lesson, you will be able to :

e State the principle of (finite) Mathematical induction.
e Verify truth or otherwise of the statement p(n) for n = 1.
o Verify if p(k+1) is true, assuming that p(k) is true;

e Use principle of mathematical induction to establish the truth or otherwise
of mathematical statements.

PREREQUISITES

e Number System
e Four fundamental operations on numbers and expressions.

e Algebraic expressions and their simplifications.

INTRODUCTION

In your daily life you must be using various kinds of reasoning depending
on the situation you are faced with. for instance, if you are told that that your
friend just had a child, you would know that it is either a girl or a boy. In
this case, you would be applying general principles to a particular case. This
form of reasoning is an example of deductive logic.

M| Mathematical Induction | 1
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MODULE -1
Algebra

m Notes

Now let us consider another situation when you look around. You find
students who study regularly, do well in examinations. You may formulate the
general rule (rightly or wrongly) that "any one who studies regularly will do
well in examinations." In this case, you would be formulating a general principle
(or rule) based on several particular instances. Such reasoning is inductive,
a process of reasoning by which general rules are discovered by the observation
and consideration of several individual cases. Such reasoning is used in all the
sciences, as well as in Mathematics.

Mathematical induction is a more precise form of this process. This
precision is required because a statement is accepted to be true mathematically
only if it can be shown to be true for each and every case that it refers to.

(B WHAT IS A STATEMENT?

In your daily interations, you must have made several assertions in the

form of sentenses of these assertions, the ones that are either true or false are
called statement or propositions. For intance, "I am 20 years old" and If
x = 3, then x* =9 are statements, but when will you leave? And 'How
wonderful!' are not statements.

Notice that a statement has to be definite assertion which can be true
of false, but not both. For example, x — 5 =7 is not a statement, because we
don't know whatx, is If x = 12, it is true, but ifx = 5, it is not true. Therefore
'x — 5 =7"is not accepted by mathematicians as a statement.

But both'x - 5=7 = x=12 and x — 5 =7 for any real number
x' are statements, the first one true and second one false.

Example 1.1 : Which of the following sentences is statetent?
(1) India has had a woman president.
(ii) 5 is an even number
(i) x" > 1
(iv) (a + b)* = @* + 2ab + b?

Solution : (i) and (i1) are statements, (1) being true and (i1) being false. (iii) is
not a statement, since we can not determine whether it is true or false, unless

we know the range of values that x can take.

I 2 [ M athematical Induction |l
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Now look at (iv), At first glance, you may say that it is not a statement,
for the very same reasons that (iii) is not. But look at (iv) carefully. It is true
for any value ofa and b. It is an identify. Therefore, in this case, even though

we have not specified the range of values for a and b (iv) is a statement.

Some statements like the one given below are about natural numbers in

general. Let us look at the statement given below:

n(n+1)
2

1+2+ ... +n=

This involves a general natural numbern. Let us call this statement p(n)
[P stands for proposition].
1(1+1)
2

Then p(1) would be 1=

similary, p(2) would be the statement

1y 204D

and so on.

Let us look at some examples to help you get used to this notation.

Example 1.2 : If p(n) denotes 2n > n — 1, write p(1), p(k) and p(k + 1),
where ke N.
Solution : Replacing n by 1, k and &k + 1, respectively in p(n), we get
p(l) :2'>2—-1, ie,2>1
plk) : 2F>k -1
plk+1): 280 >(k+1)-1, ie, 28" >k
n(3n—1)

Example 1.3 : If p(n) is the statement 1 +4+7+..+(Bn—-2)= 5

write p(1), p(k) and p(k + 1).

Solution : To write p(1), the terms on the left hand side (LHS) of p(n) continue

till 3x1 —-21.e., 1 So, p(l) will have only one term in its LHS, i.e., the

first term.

Ix(3x1-1)
2

Also, the right hand side (RHS) of p(1) = 1

MODULE -1
Algebra

Notes ﬁD
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MODULE - | Therefore, p(1)is 1 =1
Algebra Replacing 7 by 2, we get

_2x(3x2-1)
mNotes p2) : 1+4= 5, e 5=5

Replacing n by k and k + 1, respectively, we get

k(3k 1)
2

pk+1):1+4+7+ ..+ @Gk-2)+ [3(k+]) - 2]

pK):1+4+7+ .. +@Bk-2)=

_ (k+DIG(k+1)-1]
B 2

(k+1D)(3Bk+2)
5 -

e Exercise 1.1 T

1. Determine which of the following are statements:

e, 1+4+7+ .. +@k+1)=

(@ 1+2+4+ .. +2">20 )1 +2+3+..+10=99

(c) Chennai is much nicer than Mumbai.

(d) Where is Delhi ?

1++1_n
© L2 T ) nel

forn =75
(f) cosec 6 < 1

2. Given that p(n) : 6 is a factor of n3 + 5n, write p(1), p(2), p(k) and
p(k + 1) where k is a natural number.

3. Write p(1), p(k) and p(k + 1), if p(n) is
@2 > n+1 b)) AI+x)> 1+mnx
(¢) n(n+ 1) (n + 2) is divisible by 6
(d) x* — y" is divisible by (x — )

n nd Tn
(e) (ab)" = a'b" (0 ?+?+E is a natural number.

4 | M athematical Induction |l
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4. Write p(1), p(2), p(k) and p(k+1), if p(n)is

1 - 1 n
@) 1x2 7 n(n+l) n+l

G1+3+5+..+Q2n-1)=n’
©(Ix2)+2x3)+..+tnn+1)<nn-+1)>

(d) + ot ! __"
Ix3 3x5 2n-1)(2n+1) 2n+1

s THE PRINCIPLE OF MATHEMATICAL
INDUCTION

Let p(n) be a statement involving a natural number n. If
(1) itis true for n =1, i.e., p(1) is true ; and

(1) assuming k > 1 and p(k) to be true, it can be proved that p(k + 1) is

true; then p(n) must be true for every natural number 7.
Note that condition (ii) above does not say that p(k) is true.
It says that whever p(k) is true, then p(k + 1) is true.

Let us see, for example, how the principle of mathematical induction allows
to conclude that p(n) is true for n € N. By (i) p(1) is true. As p(1) is true.
we can put k=1 1in (ii), so p(1+1) i.e., p(2) is true, we can put k =2 in
(i1) and conclude that p(2 + 1), i.e., p(3) is true. Now put & = 3 in (ii), so we
get that p(4) is true. It is clear that if we continue like this, we shall get that
p(11) is true.

It is also clear that in the above argument. 11 does not play any special
role. We can prove that p(137) is true in the same way. Indeed, it is clear

that p(n) is true for all n > 1.

Let us now see, through example, how we can apply the priciple of

mathematical induction to prove various types of mathematical statements.

MODULE -1
Algebra

Notes ﬁD
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- n(n+1
MODULE -1 Example 1.4 : Prove that 1+ 2 +3 + ... + n = ( ) )
Algebra

natural number.
mNOteS Solution : We have

pn)y: 1+2+3+ ... +n=

, where n is a

n(n+1)
2

Therefore, p(1) is 'l = %(1 +1)" which is true.

Therefore, p(1) is true.
Let us now see, if p(k + 1) is true whenever p(k) is true.

Let us, therefore, assume that p(k) is true, i.e.,

1+2+3+...+k:§(k+1) (1)

Now, p(k + 1) is 1+2+3+...+k+(k+1):(k+1)#

It will be true, if we can show that LHS = RHS
The LHSof p(k+ 1)=(1+2+3+ ... k)+(k+1)

:Mﬂkﬂ)

=(k+l)(§+lj

_(k+1)(k+2)
- 2

= RHS of p(k + 1)

So, p(k + 1) is true, if we assume that p(k) is true.

Since p(1) is also true, both the conditions of the principle of mathematical
induction are fulfilled. We conclude that the given statement is true for every
natural number 7.

As you can see, we have proved the result in three steps the basic step
[i.e., checking (1)], the Induction step [i.e., checking (ii)] and hence arriving at

the end result.

B ¢ [ Mathematical Induction |l
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Example 1.5 : Prove that 1.2 + 2.2 +3.23 + 42+ ...+ n2"=(n-1).

271 + 2, where n is a natural number.
Solution : Here p(n) is 1.2' +2.22+323+ ...+ n2"=m-1).2""+2
Therefore, p(1) is 1.2'=(1 - 1) 2" +2 ie,2=2
So, p(1) is true
We assume that p(k) is true, i.e.,
120 +222+32+ .+ k2F+(k—1) .2 + 2 ..(0)
Now will prove that p(k + 1) is true.
Now p(k + 1) is
1.2'+2224+ 328+ .+ k25 + (kK + 1).25 = [(k+1)-1]2%1D+2
=k 2F2 + 2.
LHS of p(k+1) = 1.2 + 222 + 323 + ... + k2F + (kK + 1) . 2!
=k -1)2"" + 2+ (k+1).2
=201 [(k—=1)+ (k+ 1)] +2
-2 (2k) + 2
= k.22 +2
= RHS of p(k + 1)
Therefore, p(k + 1) is true.

Hence, by the priciple of mathematical induction, the given statement is

true for every natural number 7.

1
Example 1.6 : Prove that 12+ 32+ 52+ ...+ 2n — 12 = gn(Zn -D(2n+1),
where » 1s a natural number.

Solution : We have p(n)

1
12+32+524+ .+ 2n — 1)2 = gn(zn—l)(2n+l)

MODULE -1
Algebra

Notes ﬁD
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m Notes

1
p(l)is 12= 51(2—1)(2+1)=1, which is true.

Therefore p(1) is true.
Assume that p(k) is true i.e.,

1
12+ 32+52+ .+ (Zk — 1)2 = 5k(2k—1)(2k+1)
Now, p(k+ 1)=12+32+ 52+ .+ 2k - 1)* + [2(k + 1)- 1]

_ %(k+1)[2(k+1)—1] [2(k +1)+1]

= %(k+1)(2k+1)(2k+3)
LHS of p(k + 1) =12+ 3>+ 52+ ...+ 2k = 1)* + 2k + 1)?

_ %k(zk—l)(2k+1)+(2k+1)2
_ %(2k+1)[k(2k—1)+3(2k+1)]
- %(2k+1)(2k2 +5k +3)

_ %(k L2k +1)(2k +3)

= RHS of p(k + 1)
Therefore, p(k + 1) is true.

Hence, by the priciple of mathematical induction, the given statement is

true for every natural number 7.

n
3n+l-

1
Example 1.7 : Prove that —

t—t—t... =
14 47 710 T upton terms

Solution : 1,4, 7, ... are in Arithmetic progression whose n'" term is 3n-2.
4,7, 10 .... are is Arithmetic progression whose n™ term is 3n + 1.

Mathematical Induction [l
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1
(Gn—-2)(3n+1)

The n'h term is the given series is

Let p(n) be the statement :
11 1 1 n

+ot =
1.4 47 7.10 (Gn-2)3n+1) 3n+l

11 S
Sop(l) is 4 3+1 which is true.

- p(1) s true.

we assume that p(k) is true.

11 1 1 k

+...+ =
14 47 7.10 Gk-2)3k+1)  3k+1

1.€.,
Now, we will prove that p(k + 1) is true.
Now p(k + 1) is

R 1 1 k+1
—+— +o.+ + =
14 4.7 7.10 Gk-2)3k+1) (Gk+D)(Gk+4) 3k+4

1 1 1 1
LHS of p(ktl)= —+—+...+ +
1.4 4.7 Bk-2)Bk+1) (GBk+D(Bk+4)

k 1
= +
3k+1 (Bk+1)(3k+4)

_ kQBk+4)+1
© GBk+1D)(3k +4)

_ Gk+D)(k+1)
"~ GBk+1D(3k +4)

_k+1
3k+1

= RHS of p(k + 1)
Therefore p(k + 1) is true.

Hence, by the principle of mathematical induction, the given statement

is true for every natural number 7.

MODULE -1
Algebra

Notes ﬁD
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MODULE - || Example 1.8 : Using mathmatical Induction, prove thate" — y" is divisible by

Algebra | x -y, for every natural number n.

mNo tes Solution : Let p(n) be the statement : x” — " is divisible by x — y since

x'—y"=x—y isdivisible by x — y , the statement is true for n = 1.
Assume that the statement p(k) is true.
ie, x¥—y* isdivisible by x —y.

Then xf—yF =(x - y)p ...(1) where p is the quotient
when x* — ¥ is divided by x — y.
Now, we will prove that p(k + 1) is true.
i.e., we prove that x*' — y¥! is divisible by x — y
From (i) we have x* — y* = (x — y)p
xt=(x-yp+)f
= (x —y)px + Y x
X = = (x = y)px Y =
= (x —ypx + Y& -y
= (=) (px + 9
. xF — y#1 g divisible by x — y.

. p(k+ 1) is true.

Hence by the principle of mathematical induction, the given statement is

true for every natural number 7.
Example 1.9 : Show 49" + 16n —1 is divisible by 64, for every n € N.
Solution : Let p(n) be the statement :

49" + 16n —1 is divisible by 64

since 49' + 16.1 — 1 = 64 is divisible by 64,

Mathematical Induction [l
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MATHEMATICS

. p(1) is true.
Assume that the statement p(k) is true.
i.e., 49%+ 16k — 1 is divisible by 64.

Then 49% + 16k — 1 =64p ..(i) for some p € N.
Now, we will prove that p(k + 1) is true.
i.e., we show that 49¥*1 + 16(k + 1) — 1 is divisible by 64

From(i) we have 49X + 16k — 1 = 64p

o 495 = 64p—16k+1

- 49549 = (64p—16k +1).49

4951 1 16(k +1)—1 = (64p —16k +1)49 +16(k +1) -1

= 64(49p—12k +1)
Here 49p — 12k + 1 is an integer
4981 + 16(k + 1) — 1 is divisible by 64

p(k + 1) is true.

Hence, by the principle of mathematical induction, the given statement

is true for every natural number 7.
Example 1.10 : Prove that 2" > n for every natural number 7.

Solution : We have p(n) : 2" > n

Therefore p(1) : 2! > 1, i.e., 2> 1, which is true we assume p(k) to

be true that is 2¢ > k ...(i)

Now, we will prove that p(k + 1) is true. ie., 2871 >k + 1

Now, multiplying both sides of (i) by 2, we get
2k+1 > 2k
= 21 > |+ 1, since k> 1

Therefore, p(k + 1) is true.

MODULE -1
Algebra

Notes ﬁD
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MODULE -1 Hence by the principle of mathematical induction, the given statement

Algebra is true for every natural number #.

m Not Some times, we need to prove a statement for all natural numbers greater
otes
than a particular natural number say a (as in example 1.11 below). In such

a situation, we replace p(1) by p(a + 1) in the statement of the principle.

Example 1.11: Prove that n* > 2(n + 1) for all n > 3, where n is a natural

number.
Solution : For n > 3, let us call the following statement
p(n) :n?>2(n+1)

since we have to prove the given statement for n > 3, the first relevant

statement is p(3). We therefore, see whether p(3) is true.
p(3):32>2x 4 ie., 9>38
So, p(3) is true.
Let us assume that p(k) is true, where k£ > 3, that is
k> 2(k + 1) (1)
we wish to prove that p(k + 1) is true
plk+1): (k+ 1)>>2(k+2)
LHS of p(k+ 1) = (k+ 1)
=2+ 2k+ 1
> 2k+1)+2k+ 1 .. [By (1)]
> 3+ 2k+1,since 2(k + 1) >3
= 2(k+2)
Thus, (k+ 1)2 > 2(k + 2)
Therefore, p(k + 1) is true.

Hence, by the principle of mathematical induction, the given statement

is true for every natural number » > 3.

12 [ M athematical Induction |l
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e Exercise 1.2

1.

Using the principle of mathematical induction, prove that the following

statements hold for any natural number .

(@) 12+ 22+ 32+ ... +n? = %(ﬂ+1)(2n+l)
2 2
b) 13+ 25+ 3 + . b= D)
4
©1+3+5+ ... + 2(n — 1) = n
n
@1 +4+7+ ... +(Bn-2)=7Gn-1

Using principle of mathematical induction, prove the following equalities

for any natural number #:

LA S S
@ 12723 T ) n+l

1 1 n

) T2 ot =
13 35 57 2n-1)2n+1) 2n+1

n(n+1)(n+2)

(c) 1L.2+23 + ...+n(n+l)= 3

. For every natural number n, prove that

(a) n* + 5n is divisible by 6
(b) (x" — 1) is divisible by (x — 1)
(c) (n* + 2n) is divisible by 3

(d) 4 divides (n* + 2n® + n?)

MATHEMATICS

MODULE -1
Algebra

Notes ﬁD

M| Mathematical Induction [ 13
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Algebra

1. Principle of finite mathematical induction. Let S be a subset of N.
mNotes Such that (i) [e§ (ii) Forany Ke N, K €S = K+1 €S then S=N.

2. Principle of complete mathematical induction : for each n € NLet P(n)
be a statement, suppose that P(1) is true. for any Ke N, if P(1),
P(2) ... P(k) are true, then P(K + 1).

3. If x, y are natural numbers, x#y then x"—)" is divisible by

x—y V neN.

SUPPORTED WEBSITES

e http://www.wikipedia.org

e http://mathworld.wolfram.com

PRACTICE PROBLEMS

Using mathematical induction, prove each of following statements, for
all ne N.

n(n* +6n+11)

1. 23+34+45+ ...upto n terms = 3

2. a+(@+dy+(a+2d)+ ... (up to n terms) =§[261+(n—1)d]

3. 4" - 3" -1 is divisible by 9.

D2(n+2
441242+ (124 24 3) + . (upto n terms) = 27 32(’” )
s At o __n
" 14 47 710 (up to n terms) =27

EXERCISE 1.1

1. (b), (e) and (f) are statements; ( a) is not, since we have not given the

range of values of n, and therefore we are not in a position to decide,

Mathematical Induction [l
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if it is true or not. (c) is subjective and hence not a mathematical statement. | MODULE - |

(d) is a question, not a statement. Algebra
Note that (f)is universally false. Notes ﬁD
2. P(1): 6 isa factor 13 + 5.1
P(2) : 6 is a factor 23 + 5.2
P(k) : 6 is a factor kK3 + 5k
P(k + 1) : 6 is a factor (k + 1)3 + 5(k + 1)
3. (@) P(1):2>2
P(k) : 2k >k + 1
Pk + 1) : 281 >+ 2
M) P(): 1 +x> 1+x
P(k) : (1 +x)*> 1+ kx
Plk+1):(1+x)t> 1+ (k+ 1)x
(c) P(1): 6 is divisible by 6.
P(k) : k(k + 1) (k + 2) is divisible by 6.
P(k+ 1): (k+ 1) (k+ 2) (k +3) is divisible by 6.
(d) P(1): (x — ) is divisible by (x — y).
P(k) : (x* — y¥) is divisible by (x — y)
P(k + 1): (x** 1 — y¥* 1) is divisible by (x — )
(e) P(1):ab=ab
P(k) : (ab)k = a'b*
P(k + 1) : (ab)!'! = a¥*1 | pF*!

1 1 7
® P(1): §+§+Eis a natural number.

M| Mathematical Induction [ 15
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P(k) : —+—+— is a natural number.
5 3 15

Algebra
k+1)°  (k+1)° 7(k+1
mNotes P(k+ 1): (k+1) +( D) + (k+1) is a natural number.
5 3 15
11
4. (a) P(1): _ 2
(a) P(1) 55
. L 12
(2): 1x2 2x3 3
—+ Fot L __ &k
PO T2 T 23 kk A1) kit
1 1 1 k+1
P(k+1) : = + =

1x2 ""+k(k+1)+(k+1)(k+2)_k+2

(b) P(1):1 =12

PQ2):1+3=22

P(k): 1 +3+5+ ...+ 2k-1) =k

Plk+1):1+3+5+...+Qk—-1)+[2(k+ 1)-1]= (k+ 1)?
(c) P(1):1x2<1Q)2

P(2) : (1X2) + (2%3) < 2(3)?

P(k) : (1x2) + (2X3) + .. + k(k + 1) < k(k + 1)

P(k + 1) : (1%2) + (2%3) +...4(k + D)k + 2) < (k + 1)(k + 2)?

ooy L1
() ()'1X3 3
S S
()'1x3 3x5 5
1 1 1 k
Ph): —5 + +.....

+ =
1x3  3x5 k-1)(2k+1) 2k +1

R i kel
Pl +1) s 153 T3 T (k+1)(2k+3) 2k+3

Mathematical Induction [l




COMPLEX NUMBERS

LEARNING OUTCOMES

After studying this lesson, you will be able to:

describe the need for extending the set of real numbers to the set of
complex numbers;

define a complex number and cite examples;

identify the real and imaginary parts of a complex number;

state the condition for equality of two complex numbers;

recognise that there is a unique complex numberx + iy associated with

the point P(x, y) in the Argand Plane and vice-versa;

define and find the conjugate of a complex number;

define and find the modulus and argument of a complex number;
represent a complex number in the polar form;

perform algebraic operations (addition, subtraction, multiplication and
division) on complex numbers;

state and use the properties of algebraic operations (closure, commutativity,
associativity, identity, inverse and distributivity) of complex numbers; and
State and use the following properties of complex numbers in solving

problems.

B Complex Numbers

Chapter
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@z =0 < z=0and z; =z, = [z| = [z,
(i) 2] = =2 = |Z]|

(ii)) [z, + z,| < |z, + |z)|

(iv) |Zl . Zz| = |Zl| . |Zz|
2 |2 |

v [ = (z22#0).
Z |2, |

PREREQUISITES

e Properties of real numbers.
e Solution of linear and quadratic equations
e Representation of a real number on the number line

e Representation of point in a plane.

INTRODUCTION

In the earlier classes we have learnt the properties of real numbers and
studied certain operations on real numbers like addition, substraction.
Multiplication and division. We have also learnt solving linear equations in one
and two variables and quadratic equations in one variable. We have seen that
the equation x? + 1 = 0 has no real solution since the square of every real

number is non-negative.

This suggests that we need to extend the real number system to a larger
system, so that we can account for the solutions of the equation x*=—1. If
this is done, it would help solving the equation ax? + bx + ¢ = 0 for the case

b* — 4ac < 0, which is not possible in the real number system.

8 COMPLEX NUMBERS

Consider the equation x*+ 1 =10 ...(A)

This can be written as x> = —1

or x = +J-1

Complex Numbers Jill
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But there is no real numbers which satisfy x> =—1. In other words, we
can say that there is no real numbers whose square is —1. In order to solve
such equations, let us imagine that there exist a number ‘i’ which equal to
i=~-1.

In 1748 a great mathematician, L. Euler named a number ‘i’ as lota
whose square is —1. This Jofa or ‘i’is defined as imaginary unit. With the

introduction of the new symbol %’, we can interpret the square root of a negative

number as a product of a real number with i.

Therefore, we can denote the solution of (A) as x =+
Thus, —4 =4(-1)

soN— = —D@) =it 22 =20

Conventionally written as 2.
So, we have -4 = 2i, -7 =/7i

V=4, =7 areall examples of complex numbers.
Consider another quadratic equation:

x> —6x+13=0
This can be solved as under:

x-37%+4=0

or, (x -3y =-4
or, x—3=+2
or, x =3+2i

We get numbers of the form x + iy where x and y are real numbers
and i=A-1.

Any number which can be expressed in the form a + bi where
a, b are real numbers and ; = \/—1.

A complex number is, generally, denoted by the letter z.

< b

1.e., z=a+ bi, ‘a’ is called the real part of z and is written as
Re (a + bi) and ‘b’ is called the imaginary part of z and is written as Imag
(a + bi).

MODULE - |
Algebra

Notes ﬁD

M| Complex Numbers
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If a=0and b = 0, then the complex number becomes bi which is

a purely imaginary complex number.

1
=7, Ei , «/3i and i are all examples of purely imaginary numbers.

If a # 0and b= 0 then the complex number becomes ‘a’ which is
a real number.

5,2.5 and /7 are all examples of real numbers.

If a=0and b =0 then the complex number becomes 0 (zero). Hence

the real numbers are particular cases of complex numbers.

Example 2.1 Simplify each of the following using ’.
) V36 (i) v25.~4
Solution: (i) +-36 = /36(-1) = 6i
(i) 25 .4 =5 x 2i=10i

v POSITIVE INTEGRAL POWERS OF i

We know that

it={*?=(1)? =1

iS=@P.i= (1) i= ()i =

=% =(-1)3 =-1

=@y E)= D GE)=-i

=% = (-1 =+1.

Thus, we find that any higher powers of I' can be expressed in terms of

one of four values i, —1, —i, +1

If n is a positive integer such that n > 4, then to find in , we first divide

n by 4. Let m be the quotient and » be the remainder

Then »n =4m + r, where 0 <r <4.

Complex Numbers Jill
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Thus,
l'n:l‘4m+r:l‘4m. l'r
=Y .0
= " (. i*=1)

Note: For any two real numbers a and b, g x+/b = +/ab is true only

when atleast one of a and b is either 0 or positive.

If fact —qg x\/j
I.v\axi bzl’z@

—\ab , a, b where a and b are positive real numbers.

Example 2.2: Find the value of 1+ 7'+ /2 + /9.

Solution: 1 + ;% + 20 + 30
= 1+@+ @+ @"
= 1+ 1)+ D0+ (=)
= 1+ D)+ )+ (=D
= 1-1+1-1
=0
Thus, 1 + 0 + 20 + 30=

Example 2.3: Express 8 + 6i'° — 12i'"' in the form of a + bi.

Solution: 87 + 6i'° — 12;'! can be written as 8(i%) . i + 6(i*)* — 12(i%)° . i

= 8(=1).i+6(-1)F— 12(-= 1) .

= 8i+6—12(-1)i

-8i+ 6+ 12i

= 6+ 4

which is of the form of a + bi where ‘a’ is 6 and ‘b’ is 4.

MODULE - |
Algebra

Notes ﬁD

M| Complex Numbers | 2 1
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" EXERCISE 2.1

1. Simplify each of the following using ‘i’.
(@) -27 b -9 © -13
2. Express each of the following in the form of @ + bi .
(@ 5 (b) =3i (c) 0
3. Simplify 103 + 613 — 12410

4. Show that i+ Ml 4 jmt2 4 ;m3 =0 forall meN.

y3 CONJUGATE OF A COMPLEX NUMBER

Consider the equation:
x2-6x+25=0 .. (i)
or (x-32+16=0

or, (x—-232=-16

or, (x-3)= im:im

o, x = 3+4i

The roots of the above equation (i) are 3 + 47/ and 3 — 4i .

Consider another equation:

A2+ 2=0 .. (i)
or, x+1)2+1=0
or, (x+1)2=-1

or, (x+1)= +J-1=4;

or, x = =1+

The roots of the equation (ii) are —1 +iand —1 — 7.
Do you find any similarity in the roots of (i) and (i1)?

The equations (i) and (ii) have roots of the type a + bi and a — bi. Such
roots are known as conjugate roots and read as a + bi is conjugate to «

— bi and vice-versa.

] 22 | Complex Numbers Jil
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The complex conjugate (or simply conjugate) of a complex number

z =a + bi is defined as the complex number a — bi and is denoted by z .

Thus if z=a + bi then z = a — bi.

Note: The conjugate of a complex number is obtained by

changing the sing of the imaginary part.

Following are some examples of complex conjugates:

@
(ii)
(iif)

z=2+3i then z=2 - 3i.
z=1—-7 thenz=1+1.

z=-2+10{ then z=-2 — 10; .

2.3.1 PROPERTIES OF COMPLEX CONJUGATES

@

(ii)

(iii)

If z is a real number then z = Z i.e., the conjugate of a real number
is the number itself.

For example, let z =5

This can be written as

z=5+0i
z =5-0i=5
z =5=2

If z is a purely imaginary number then z = -z
For example, if z= 3i

This can be written as

z=0+ 3
z =0-3i=-3i
= —z
zZ = -z

Conjugate of the conjugate of a complex number is the number itself.

i.e., (ZT) = Z
For example, if z= a + bi then

zZ=aqa — bi

MATHEMATICS

MODULE - |
Algebra

Notes ﬁD

M| Complex Numbers | 23 |




MATHEMATICS | 311 Mathematics Vol-|(TSOSS) |

MODULE - |
Algebra

mNotes

Again, a: (a-bi)=a+bi=z
°. 6 = Z.
Example 2.4 : Find the conjugate of each of the following complex number.
, ” . il
(i) 3—4i (i) 2i (i) (2+1)? ) —-
Solution: (i) Let z=3 -4
then Z=3-4;i=3+4i
Hence, 3 + 4i is the conjugate of 3 — 4i.

(@) Let z=2i or 0+ 2i

then Z=0+2i=0-2i=-2i
Hence, — 2i is the conjugate of 2i .
(i) Let z= (2 + i)?
ie, z=2)2+@()?>*+202) >
=4 —1+4i
=3+ 4i

Then z =3+4i =3 — 4i.

Hence, 3 — 4i is the conjugate of (2 + )% .

N L B e
(iv) Le 5 )
then 272')7 272

i —i+1 ) i+1

Hence, ——% or is the conjugate of B

Complex Numbers Jill
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MATHEMATICS

COMPLEX NUMBER

Let z=a + bi be a complex number.
Let two mutually perpendicular lines XOX'
and YOY' be taken as x-axis and y-axis

respectively, O being the origin.

Let P be anypoint whose coordinates
are (a, b). We say that the . P(a, b)
complex z=a + bi is represented by the

point P(a, b) as shown in Fig. 1.1

If =0, thenz is real and the point
representing complex number z = a + 0i
is denoted by (a, 0). This point (a, 0) lies

on the x-axis.

So, xox’ is called the real axis. In
the Fig. 1.2 the point Q (a, 0) represent

the complex number z = a + 0i.

If a=0, then z is purely imaginary
and the point representing complex number
z=0+ bi is denoted by (0, b). The point
(0, b) lies on the y-axis.

So, YOY' is called the imaginary axis.
In Fig.1.3, the point R (0, b) represents

the complex number z = 0 + bi.

The plane of two axis representing
complex numbers as points is called the

complex plane or Argand Plane.

yX: 8 GEOMETRICAL REPRESENTATION OF A

MODULE - |
Algebra
A Notes ﬁD
.................... Pla.b)
X € 5 >
v
' Fig. 2.1
A
X € K— s —> S
N 0 O(a.0) LS
M
Fig. 2.2
v
N
T R(0.b)
b
xl\ é >
v
v
Fig. 2.3

M| Complex Numbers | 25 |
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Example 2.5: Represent comple pY
4 4+
bers 2 + 3i and 3 + 2i in the sar 3 A(23)
gand Plane. 24 . eB(32)
Solution: i ‘
y . x'€ ————5x
1. 2 + 3i is represented by the poir 0 1 2 3 4
A (2,3)
2.3+ 2i is represented by the poir ;/(
B (3, 2) Clearly, the points A and B Fig. 2.4
are different.
Example 2.6: Represent complex numbers "
2+ 3i=and -2 — 3i in the same Argand 1
Plane. T P(2.3)
Solution: ;¢
1. 2 + 3i is represented by the point i
P(2, 3) X € 5 > X
2. -2 — 3i is represented by the point a4
Q(-2, -3). _—
Points P and Q are different and lie Q‘(~2—% )"'3"'”
in the I quadrant and III quadrant o v  Fig. 25
respectively. Y
Example 2.7: Represent complex numbers A
4 4
2 + 3iand 2 — 3i in the same Argand 3 Y R (2,3)
o+ o 0o 0o &
Plan »
2T .
Solution: 1+ ¢
1. 2 + 3i is represented b the poirft' - lQ .1 12 '3 4; X
R(2,3) il
2. 2 —3i is represtned by the point . .
5(2, -3) | 5@3)

Fig. 2.6

Complex Numbers Jill
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MATHEMATICS

Example 2.8: Represent complex t ,Fl 10DULE - |
bers 41 P(2,3) Algebra
2 + 3i, -2 — 3i in the same Argand F e eey ﬁD
. 2+ . Votes
Solution: I .
;s B = | :
1. 2+ 3i is represented by the Y M T
point P(2, 3). - O 1 23 4
. —1-»- ®
2. =2 —3i isrepresented by the . 24
point Q(-2, —3) . :
[ ) v—31*‘o ceo e @ R(Z,__3)
3. 2 —3i is represented by the Q(-2,-3) \

' Fig. 2.7
point R(2, —3) y '

A2 MODULUS OF A COMPLEX NUMBER

We have learnt that any complex number z = a + bi can be represented
by a point in the Argand Plane. How can we find the distance of the point from
the origin? Let P(a, b) be a point in the plane representing a + bi. Draw

perpendiculars PM and PL on x -axis and y-axis respectively.

Let OM = g and MP = b. We have to find the distance of P from the
origin. y

N
. OP = VOM? + MP? J
oom s wanmns . P(a,b)
= Va’ +b? T
b
OP is called the modulus or l
absolute value of the complex number X' €= : . M —>%
a + bi.
Modulus of any complex J
number z such thatz = a + bi y'  'Fig. 2.8

sz = a+bi aeR,beR is denoted by

| z | and 1s given by /42 4+ p2
o |z| =|a+bi|= Na® +b>.

B Complex Numbers
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2.5.1 Properties of Modulus
@ |zZ=0 < z=0

Proof: Let z=a + bi, aeR, beR.

then |z|=+a?+b?
Zl=0 o & +b=0
< a=0and b =0 (since a?and b? both are positive)
o z=0.
(b) Izl =1z 1.
Proof: Let z = a + bi

then |z|=+a®+5b>

Now, z =a — bi

|7 = a2+ (=) =a? +b
Thus |z|=+a®+b* =|Z| . (1)
© |lz|=]-2]

Proof: Let z = a + bi then, |z|=+a®+b*

—z = —q — bi, then |—z|= \/(—a)2+(—b)2 = \/a2+b2
Thus, |z|= m =|—z| ..(i1)
By (1) and (ii) it can be proved that
lz|=]-2]| =|Z]
Now, we consider the following examples:
Example 2.9: Find the modulus of z and z if z = -4 + 3i.

Solution: z = -4+ 3i, then |z|= (—4)2 +(3)2

=J16+9 =25 =5.
and z =4 - 3§

then, |Z|=/(-4)% +(=3)* =/16+9 =25 = 5.

Thus, |z| =5 = |z|.

Complex Numbers Jil
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Example 2.10 : Find the modulus of z and —z if z = 5 + 2i. And also show
that |z| = |—z|

Solution: z =5 + 2{, then —z = -5 -2}
|z| = V52 +2% = 29 and
| =z | = J(=5)" +(-2)* =29
Thus |z = 29 = |-z

Example 2.11: Find the modulus of z, —z and z where z =1 + 2i.

Solution: z =1+ 2/ then—z =-1-2; and z=1 - 2§
|z|=V12+22 =5
|z | = J(=)>+(=2)* =5
and |Z] = J(1)* +(-2)* =5

Thus, |z|=[-z[=]Z]|
Example 2.12: Find the modulus of:
@ 1+ @) 27 (i) O @) —zi

Solution: (i) Let z=1+i

then 1z|=N12+12 =42

Thus, |1+i]=+2

(@ Let z=2m or 2n + 0i

Then 2| = y(2m)* +(0)* = 2n

Thus, |2n|=2m.
If zisreal then |z | =7z

@) z=0 or 0+ 0i

then 1z|=40%+0% =0
Thus, |z |=0.

MODULE - |
Algebra

Notes ﬁD
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MODULE -1| . 1. 1.
(iv) Let z=—-=i or 0——1i
Algebra 2 2
e 1y 1
Notes th = .[0? +(__] -
ez 2) 2
L D
Thus, 5 >

If z is purely imaginary number, then z = |z|.

Example 2.13 : Find the absolute value of the conjugate of the complex number
z=-2+3i.

Solution: Let z= -2 + 3ithen z = -2 — 3;

Absolute value of zZ =|z|=2-3i] = {/(=2)*+(=3)?

=J4+9 =13
¢
Example 2.14: Find the modulus of ¢ i)
the complex numbers shown in an Q(—4,2) R 13
Argand Plane (Fig. 1.9) [
Solution: (i) P(4, 3) represents the X ¢<—+—— —_ > X

43240 123 4

+

complex number z = 4 + 3i.

PR FENPCIN R-1-H] TG
- ' ¥ Fig. 2.9
or |z| = 5. y

(1) Q(—4, 2) represents the complex number z = -4 + 2i

12| = J(=4)? +(2)> =16 +4 =20
s lzl=245.
(i) R(—1, =3) represents the complex number z = -1 — 3i .
clz) =A=D2+(=3)? =149
or |z| =10
Complex Numbers s
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(iv) S(3, -3) represents the complex number z =3 — 3i .

szl =B +(=3)? =49+9
or |z|=+18= 32.

e EXERCISE 2.2 L

1. Find the conjugate of each of the following:
(@) —2i (b) =5 —3i ©) -2 (d) (2 +i)?
2. Represent the following complex numbers on Argand Plane:
(@) (i) 2+0i @) -3+ 0i (i) 0-—0i (@iv) 3-0i
(b) (1) 0+2i (i) 0-3i (i) 4i (iv) —5i
(¢) 1)2+5i and 5+2i ()3 —4i and—4+3i
(i) =7 +2iand2-7i (iv) —2—9i and -9 — 2i
(d ()1+iand-1—i (i1) 6+ 5Siand—6—5i
(i)-3+4iand3—-4i (iv) 4—iand -4 +i
(e) )1 +iand1—i (i) -3 +4iand -3 —4i
(ii))6—7iand6+7i (iv) —5—i and -5+

3. (a) Find the modulus of following complex numbers:

@ 3 @ (i+1)Q2-i) (i) 2-3i
(v) 4+ /5i
(b) For the following complex numbers, verify that |z | =|Z|.
1) —6+8i @ —3-7i
(c) For the following complex numbers, verify that |z | = |-z ]|.
i 14+ @) 11-2i
(d) For the following complex numbers, verify thaf z | = |—z| = |-Z|.
i 2-3i (i) —6-1i () 7-2i
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p AN EQUALITY OF TWO COMPLEX NUMBERS

Let us consider two complex numbers z =a + biand z, = c +di such
that z, = z,.

we have a + bi = c + di

or (a-c)t+b-di =0 =0+0i

Comparing real and imaginary parts on both sides, we have
a—-c=0o0r a=c

— real part of z = real part of z,

and b—-d=0 or b=d
— 1maginary partof z, = imaginary part of z,

Therefore, we can conclude that two complex numbers are equal if and

only if their real parts and imaginary parts are respectively equal.

In general a + bi = c + di if and only if a=c and b =d.
Properties: z = z, = |z,| = |z,

Let z, =a+bi, z,=c+ di

z, =z,glves a=c andb=d
Now |z | =+a®+b* and |2 ]= Vet +d?
= a2 +b?% (since a = c and b = d)

= Iz] = I
Example 2.15: For what value of x and y, 5x + 6yi and 10 + 18i are equal?
Solution: It is given that 5x + 6y i= 10 + 18 i

Comparing real and imaginary parts, we have
S5x=10 or x=2
and 6y=18 or y=3

For x =2, y =3, the given complex numbers are equal.
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A8 ADDITION OF COMPLEX NUMBERS

If z =a+bi and z,=c+di are two complex numbers then their

sum z, + z, is defined by

z, tz,=(a+c)+ (b+di
For example, if z =2 +3i and z,=-4+5i
then z, tz,=[2+ (] +[3+5]i
=-2+ 8i
Example 2.16: Simplify
@ 3 +20)+ 4 -30)
() (2 +5i) + (=3 = 7i) + (1 — i)
Solution: (i) 3 +2))+ (4-3)=Q3+4)+(2-3)i=7—1i
() Q+5)+(3-TH+(1-)=2=-3+1)+(B-7-1)i
=0-3i
or 2+ 50+ (=3-7i)+ (1 —i)=-3i
2.7.1 Geometrical Represention of Addition of Two Complex
Numbers

Let two complex numbers z, and z, be represented by the points P(a,
b) and Q(c, d).

Their sum, z, + z, is represented by the point R (a + ¢, b + d) in the
same Argand Plane.

Join OP, OQ, OR, PR and QR. \1,
Draw perpendiculars PM, QN, R(atc, b+d)
RL from P, Q, R respectively on Aed~ o
X-axis.
Draw perpendicular PK to RL K
In AQON A
ON =c¢ xres — X
and QN =d 0 N R
In AROL In A POM ‘L' Fig.2.10 )
Y
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MODULE-I|RL=b+d PM =5
Algebra | andOL=a+c OM =4

mNotes Also PK =ML

= OL - OM
=atc-a
= ¢ = ON.
RK = RL - KL
= RL - PM
= b+d-b>b
= d=0QN

A QON and A RPK,

ON = PK, QN = RK and ~ZQNO = ZRKP = 90°.
.. AQON = ARPK
.. 0OQ=PR and OQ // PR.

= OPRQ is a parallelogram and OR its diagonal.

Therefore, we can say that the sum of two complex numbers is represented

by the diagonal of a parallelogram.
Example 2.17 : Prove that [z, +z| <|z| + |z,|.

Solution : We have proved that the sum of two complex numbers z and z,

represented by the diagonal of a parallelogram OPRQ (see fig. 1.11).

In A OPR
OR < OP + PR
or OR < OP + 0Q (~ 0Q = PR)

or |z, +z|<l|z|+ |z]
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Example 2.18: If z =2 + 3iand z, = 1 +

verify that |z +z| <l|z]|+ |z

Solution: z =2 +3iand z,=1+i represented by the points (2, 3) and
(1, 1) respectively. Their sum ( z, + z,) will be represented by the point
2+ 1,3+ 1) 1.e. (3, 4).

Verification:

|zl|:\/22+32 =13 =36 approx.
|z, | =VI2+12 =2 =141 approx.
|z, +2, | =32 +4> =25 =5

|z |+ ]z, | =3.6+1.41 =501
|Z1 + zz| < |Z1| + |zz|
2.7.2  Subtraction of the Complex Numbers

Let two complex numbers z, =a + biand z, = c +di be represented
by the points (a, b) and (c, d) respectively.
z,—z, = (a+bi)—(c+di
= (a- o+ ®- di

which represents a point (a — ¢, b — d).

.. The difference i.e., z, — z

, — 2z, isrepresented by the point (a — ¢, b — d).

Thus, to subtract a complex number from another, we subtract corresponding
real and imaginary parts separately.

Example 2.19 : Find z -z, in each of following if:
@ z;=3-4i, z,=-3+Ti
(b) zy=-4+Ti, zy=-4-73i
Solution : (a) z; —z, = 3 — 4i) — (-3 +7i)
=3B -4 +3 -7
=B+3) +(-4-"7i
=6+ (-11)i =6 - 11i
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MODULE -1| ®) z; -z, =(-4+7i) — (-4 -5i)

Algebra = (-4 + 7)) + 4+ 5i)
mNotes = (-4 +4) + (7 +5)
— 0+ 12i =12

Example 2.20 : What should be added to i to obtain (5 + 4i)?
Solution: Let z = a + bi be added to 1 to obtain 5 + 4i
i +(a+bi)=5+4i
or at b+ 1)i=5+4i
Equating real and imaginary parts, we have
a=5and b+1=40r b=3
. z=5+3i is to be added to i to obtain 5 + 4i.

vR: B PROPERTIES: WITH RESPECT TO ADDITION
OF COMPLEX NUMBERS

1. Closure : The sum of two complex numbers will always be a complex

number. z, =a, + by and z, =a, + byi, a;, b, a, b, € R.
Now z, +z, = (a; +a,) + (b; + b,)i which is again a complex number.
This proves the closure property of complex numbers.

Thus, (1+i)+ 2+3i)=(+2)+(1+3)i=3+4i which is again
a complex number.

Similarly, the difference of two complex numbers will always be
a complex number. For example, (2 +4i) - (1 -4i))= 2-1)+
{4 — (-4)} i = 1 + 8i, which is again a complex number.

2. Commutative: If z; and z, are two complex numbers then

zy +22222+Zl.
Let zl=a1+b11 and 22=a2+b21
Now z, +2z, = (a; + byi) + (a, + byi)

= (a; T ay) + (b, + by)i
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= (ay T a) + (b, + by)i
[commutative property of real numbers]

(ay, + b,y i) + (a; + byi)
=zt
e, zytz, = z, 12z,
Hence, addition of complex numbers is commutative.
For example, z;, =8 +7i, z, = 9 —3i then
zytzy = 8@+T7))+ (9 —-3i)and z; +2z, = (9-3i) + (8 +7i)
=8 +9)+ (7-23)i and = 9+8)+(-3+7i
zytzy = 17+ 14i and z, +z, = 17 + 14
We get, z; + z,= 2z, + 73
Now, z; —z, =(a;+ byi) — (a, + byi)
=(a; —ay) + (b — by)i
and  z, —z; = (a, + byi) — (a; + bji)
=(ay —ay) +(by — b)i
=—(a; —a,) — (b; — by)i
= —(a, + byi) + (a, + byi)
L Z]—Zy #£ Zy—Z4
Hence, subtraction of complex numbers is not commutative.
For example, ifzy =8 +7iand 2z, = 9 - 3i then
zy—zy = 8+T7)=(9-3i) and z,—z;= (9-3i) - (8 +7i)
= @8-9+T7+3)i = O-8+((-3-7i
or zy —z,= -1 +10i and 2z, —z;=1-10i
L Zy —Zy # Zy—Zy.
3. Associative : If z;, =a + bji, z,=a, + byi and z3=a; + bsi
are three complex numbers, then

Z1t(zy t23) = (2 T 2p) + 23

B Complex Numbers
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MODULE - | Now z; + (z, + z3)
Algebra = (a; + b)) + {(ay + byi) + (a3 + b3i)}
m = (ay + byi) + {(ay + ay) + (by + by)i}
Notes

{(al + (a2 + 03)} + {b1 + (bz + b3)}i

{(a; + a,) + (by + by)i} + (ay+ bsi)

{(ay + byi) + (ay + byi)} + (ay + byi)
=(z; + 2zp) + z3.

Hence, the associativity property holds good in the case of addition of
complex numbers.

For example, if z =2+ 3i, z,=3i and z,= 1 — 2i, then
zy T (25 T 2z3) = (2 + 3i) + {(3i) + (1 = 20)}.
=2 +3)+ (1 +1)
= 3+ 4i)
(zy+2y) T2y = {2 + 3i) + 3i)} + (1 - 2i)
= (2 + 6i) + (1 — 2i)
= (3+4i)
and z; +(zy +z3) = (2, + 2,) + 23
The equality of two sums is the consequence ofthe associative property

of addition of complex numbers.

Like commutativity, it can be shown that associativity also does not hold
good in the case of subtraction.

4. Existence of Additive Identitiy

If x + yi be a complex number, then there exists a complex number
(0 + 0d)

Such that (x + yi) + (0 + 0i) = x + yi.
Let z, =x + yi be the additive identity of z; = 2 + 3i then

Zl+22=21

e, (2+3i)+(x+y)=2+3i
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or Q+x)+B+y)i=2+3i

or 22+x)=2;3+y=3

or x=0and y=0

1e., z, =x +yi =0+ 0i is the additive identity.
ie., if z=a+ bi is any complex number, then

(a+ bi)+(0+0i)=a+ bi
ie., (0 + 0i) is the additive identity.
z) — 2, = (2 4+ 3i) — (0 + 0i)
=2-0+@3-0)
=2+ 3i
=z,
. zy = 0+ 04, is the identity w.r.t. subtraction also.
as (a+ bi)—(0+0i)=a+ bi
Existence of Additive Inverse

For every complex number a + bi there exists a unique complex number
bi such that (a + bi) + (—a — bi) = 0 + 0i.

Example: Let z; =4 + 5iand z, = x + yi be the additive inverse of

|
Then, z; +z,=0
or (4+5)+(x+yi) = 0+0i
or 4+x)y=0and 5+y=0
or x=-4 and y=-5
Thus, z, =-4 - 35i is the additive invese of z; =4 + 5i

In general, additive inverse of a complex number is obtained by changing

the signs ofreal and imaginaryparts.

Consider z1—2,=0

MATHEMATICS
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mNotes

or @4+5) - (x+yi)=0+0i
or 4-x)+ S -y)i=0+0i
or 4—-x=0and 5-y=0
or x=4and y=15

e, z; —z,=0gives z,=4+35i
Thus, in subtraction, the number itselfis the inverse.

ie., (a + bi) —(a + bi) =0+ 0i or O.

e EXERCISE 2.3

1. Simplify:

2+ 2-i
@ (2 +50) +(5 -2 0 St

(©) (1+0)—(1-60) @) 243D - (-2-70)
2. If zy=(5 +1i)and z, = (6 + 2i) then:
(a) find z, + z, (b) find z, +z
©Is z, +z,=2z +2z7?
(d) find z, -z, (e) find z, -z,
DIsz —z,=2,-2 7
3.1f zy= (1 +14), z,= (1 —i)and zy = (2 + 3i), then
(@ find z, + (z,+ z,) (b) find (z, + z)) + z,
©Isz +(z,+z)=(z, +z)+2z? (d) find z, — (z,— z,)
(e) find (z, —z,)- z,
O Isz -(z,-2z)=(z~2) - z.?
4. Find the additive inverse of the following:
(@ 12 - 7i (b) 4 - 3i
5. What shoud be added to (15 + 4i) to obtain (3 —2i)?

6. Show that {(3+71)— (5+20)} = (3+71)— (5+2i)
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¥R:] ARGUMENT OF A COMPLEX NUMBER

Let P(a, b) represent the complex number z=a + bi,aeR,beR

and OP makes an angle 0 with the positive direction of x -axis.

Y
Draw PM 1 OX T+

P(a,b)

Let OP = .
€ r r/y,I

In right AOMP

OM = a X€ (’)‘ia—-;\kl - >X
MP = b

7 COS e =a v Fig. 2.11

r sin 0 = b.

Then z = a + bi can be written as z = r(cos 0 + i sin 0) ...(1)

b
where 7 =+a’>+b> and tan® = ;

or 0= tan_l(éj
a

This is known as the polar form of the complex number z and r are

respectively called the modulus and argument of the complex number.

A1} MULTIPLICATION OF TWO COMPLEX
NUMBERS

Two complex numbers can be multiplied by the usual laws of addition

and multiplication as is done in the case of numbers.
Let z, = (a + bi) and z, = (¢ + di) then,
z, .z, = (a+ bi) (c + di)
= a(c + di) + bi(c + di)

or = qc + adi + bci + bdi*

or = (ac — bd) + (ad + bc)i (since 2 = —1)
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MODULE - |
Algebra | defined as the complex number (a — bd) + (ad + bc)i .

mN otes Example 2.21: Evaluate:

() (1+2)(1-3i) @) (3+i) V3-10) (iii) (3 - 2i)2
Solution: (i) (1 + 2i) (1 — 3i) = {(1 — (=6)} + (=3 + 2)i
=7

| 311 Mathematics Vol-(TSOSS) |

If (a + bi) and (¢ + di) are two complex numbers, their product is

(i) (B+)B-i) = (3- D)+ (—B3+B)
=4+ 0i
(i) (3 -=2ip =3 -2i) (3 - 2i)
=(9-4)+ (-6 - 6)i
=5-12i
2.10.1 Properties of Multiplication
lz, . z| = lz,| . |z,].

Let z, =r/(cos O +isin0)and z, =r, (cosO, +isin 0,))

. _ 2 .20 _
Szl =nh .\/cos 0, +sin“ 0, =5
Similarly, |z,| = r,.

Now, z, .z

, =r(cos O +isin0).r,(cosO, +isin0)

=7, .7,[(cos 0 cos0,—sin0 sin0,) + (cosO, sinO,+sin 0O, cos0,)]
=r, .r,[cos (0, +0,)+isin (0 +0,)]

[since cos(6, +0,) = cos6, cos0, —sinH, sinO, and

sin(0; +0,) = sin 6, cos O, +cos O, sinO,

21 . 2y | = Ry AJcos? (6, +0,)+sin>(6, +6,)

and argument z .z,= 0 + 0, =arg(z) + arg(z,).
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Example 2.22 : Find the modulus of the complex number (1 + i) (4 — 3i/) | MODULE - |

Solution: z = (1 + i) (4 — 3i) Algebra

then |z| = |(1 + i) (4 — 3i)| Notes ﬁ[)

=1 +1i| |4 - 3i (since |z, . z

But [1+i|=vI>+1? =2
14-3i| = /4> +(=3)? =5
s lzl=+2.5=542.

¥R&% DIVISION OF TWO COMPLEX NUMBERS

Division of complex numbers involves multiplying both numerator and

A =zl 1z

denominator with the conjugate of the denominator. We will explain it through

an example.
Let z,=a+bi and z, = c + di then.
2 atbi a0
z, c+di

a+bi  (a+bi) (c—di)
c+di  (c+di) (c—di)

(multiplying numerator and denominator with the conjugate of the denominator)

_ (ac+bd) + (bc—ad)i
+d?

a+bi _ac+bd bc—adi
c+di  F+d* F+d?

Thus,

Example 2.23 : Divide 3 +i by 4 —2i

) 3+i (3+i)(4+20)
Solution : 5 = (4 204 + 21)
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Multiplying numerator and denominator by the conjugate of (4 — 2i)
we get

10410
20
11
= —+—i
2 2
- 3+i _ 11
U 4o 22

2.11.1 Properties of Division

. A

|z, |

2
Proof:
z, =r/(cos O +isinb)

z, = r,(cos 0, +isin 0,)

|z, | =7 \/cos2 0, +sin’ 0, =,
Similarly, |z,| = r,
and arg (z) =0 and arg (z,) = 0,

z;  1j(cosO; +isin0,)

Then, Z B 7,(cos 0, +isin0,)

_ 7i(cos0; +isin0;) (cos0, —isin0,)
7,(cos0, +isin0,)(cosO, —isin6,)

1 (cosB; cosB, —icosB; sinb, +isinb, cosH, +sinb, sinb,

1 (cos” 0, +sin” 0,)

=4 [(cos6, cosB, +sin 0O, sinB,)+i(sinO; cosO, —cos O, sin 6, )]
)

= L [cos(0, —0,)+isin(6, —0,)]
)
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Z

Z

= i\/cos2(61 —0,)+sin’*(0, -0,) = us

Thus,
) r

2
Z

. Argument of i 0,-0,

r

Example 2.24: Find the modulus of the complex numbef

241
3—1i
2+1
Solution: Let z=——
3—i
R e e R P Y

V22 +12 5 1

JE+1? N0 A2

1

Szl=—

N

w3 PROPERTIES OF MULTIPLICATION OF TWO
COMPLEX NUMBERS

1. Closure

If zy=a+bi and z,= c + di be two complex numbers then their

product z,. z, is also a complex number.
2. Cummutative

If zy=a + bi and z,= c +di be two complex numbers then z,. z,
= Zz . Zl
For example, let z; =3 +4i and z,=1 -1
then ziz, =@ +4)( -1
=31 —-1i)+4i(1 - i)
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MODULE - | 330+ 4i - 4P
Algebra =3 - 3i +4i—4(-1)
mmtes —34+ i 44 =T+
Again, 2574 = (1 -9 3 +4

=B +4i)-i(3+4)
=3+ 4i —3i — 4°
=3+i +4 =7+
L ZiZy T zpzy =T+
3. Associativity
If zy=(a+bi), zg=c+di and z3 = (e + fi) then
21 (25 23) = (2] . 2y) 73
Let us verify it with an example :
If zg= (1+14),z,=(2+1i)and z3=(3 + i) then
z((zy . z5) =(1+D) {2+ (3+10)
=1 +i){6-1)+3+2)i}
=1+ +50)
=5-5+0B+5i
=0+ 10i = 10:
and  (z;.2p)zy = {(1 + i) 2+ i)} B +1)
={2-1D)+0+2)i} 3+
=1 +3i) B+
=3B3-3)+{ +9)
=0+ 10i = 10i

Soozy(zy L 23) = (21 . 2p)z5 = 100
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4. Existence of Multiplicative Identity :

For every non-zero complex number z, = a + bi there exists a unique

complex number (1 + 07) such that
(a+bi) (1 +0i)= (1+00)(a+ bi)=a-+ bi
Let z; =x + yi be the multipicative identity of z; = a + bi

Then 7z, = z.

ie., (a + bi) (x +yi)=a + bi

or (ax — by) + (ay + bx)i = a + bi
or ax —by=a, ay + bx = b

or x=land y=0

le, z =x+yi=1+0i be the multipicative identity.
The complex number 1 + 0i is the identity for multiplication.
Let us verify it with an example:
If z=2+ 3i then
z. (1 +00)=2+30i) (1 +00)
=2-0)+ @3 +0)
=2+3i
5. Existence of Multiplicative inverse:

Multiplicative inverse is a complex number that when multiplied to a
given non -zero complex number yields one. In other words, for every
non-zero complex number z = a + bi, there exists a unique complex number

(x + yi) such that their product is (1 + 0i).
e, (a+bi)y(x+yi)=1+0i
or (ax — by) + (bx +ay)i=1+ 0i
Equating real and imaging parts, we have

ax —by=1 and bx +ay =0

B Complex Numbers
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MODULE - | By cross multiplication
Algebra x_yo__ 1
§ a -b  a*+b
Notes b Im(2)
a Re(z) _ _
= X = = and V= =
X 2B |Z|2 22+ b2 |Z|2

Thus, the multiplicative inverse of a non-zero complex number
z = (a + bi) is

ey = {Re(z) _—Im(z) 11 - z_

2
|z | z]

Example 2. 25 : Find the multiplication inverse of 2 — 4i.
Solution: Let z=2 -4
we have, z =2+ 4iand [z>?=]2> + (-4)’] =20
.. Required multiplicative inverse is

z 2+4i 1 1,
= +

= =—+—1
zP 20 10 5

Verification:

1 1.
If 10 + gl be the muliplicative inverse of 2 — 4i, their product must

be equal to 1 + 0i

We have, (2-4i) L+li = 34.& + g_ii
10 5 10 5 5 10

=1 + 0i which is true.
6. Distributive Property of Multiplication over Addition
Let zy =ay +byi, z,=a, + by and zy=ay + bsi
Then z(zy +2z3) = 22, + 2,23
Let us verify it with an example:
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zi(zy +z3) = (3 —20) {(-1+4)+(-3-1)}
=3 -2)(-1+4i-3-1)
= (3 - 2i) (-4 + 30
= (=12 + 6) + (9 + 8)i
=-6+17i
and z,z, = (3 — 2i) (-1 + 4i)
=(-3+38)+ (12 +2)i
=5+ 14i
and z;zy = (3 —2i) (-3 - i)
=(-9-2)+ (-3 + 6)i
=— 11 +3i
Now zyzy + zjz3 = (5 + 14i) + (-11 + 3i)
= =6 +17i

z2i(zy t 23) = 21z, T 2123

EXERCISE 2.4 S

1. Simplify each of the following:

@ (1+2)(2-0) ®) (V2+i)
) B+ —-i)(-1+i) (d 2+30) =+ (1-2i)
() (1+2i) = (1+1i) (e) (1+0i) +B+7i)
2. Compute multiplicative inverse of each of the following complex
numbers:
@ 3 -4 O e © S

3. Ifz; =4 +3i, zy=3-2i and z3 =i+ 5 verify that z,(z, + z3)
= ZlZZ + 2123.
4. If zy =2 +1i, z,=-2+iand zy; = 2—i then verify that (z; . z,)z3

=2z,(z, . 23)
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De Moivre's Theorem

LEARNING OUTCOMES

After studying this lesson, you will be able to :
e Use it in studying the n'? roots of unity.
e Obtain a version of De Moivre's Theorem for rational indices.

e Solve an equation and find the roots in the polar form of any complex

number, even it is a positive number, negative number and fraction.

e Helps us find the power and roots of complex numbers easily.

PREREQUISITES

e Properties of complex number.
e Solution of linear and quadratic equations.

e Representation of a complex number in the Argand Plane.

INTRODUCTION

In the previous chapter we learnt that cis0, . cis6, = cis(0, + 6,) and
hence (cis0)? = cis 20. In this chapter we extend this result for any integer.
The extension is called De Moivre's theorem for integral indices. We use it
in studing the n™ roots of unity. We also obtain a verson of De Moivre's

theorem for rational indices.

De Moiver's Theorem - Integral and Rational Indices

In this section Demoivre's theorem is proved. By using this theorem all
the n™ roots of a complex number Z # 0 are determined. As a particular

case, all the n'" roots of unity are determined.
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De Moivre's Theorem for Integral Index

For any real number 6 and any Integer n,

(cos 6 +isin )" =cos n 0 + i sin no
Proof: Let 0 be a given real number. We distinguish three cases.

Case(i) Let n be a positive integer. We prove the theorem using the prin-

ciple of mathematical induction onn.

Let p(n) be the statement (cos 0 + i sin 0)” = cos n 0 + i sin n0.

If n=1,then LHS=cos 0 +isin® =cos 160 +isinl16=RHS.

. p(l) is true.

Assume that p(k) is true for k& € N.

i.e., (cos © +isin 0)" = cos k0 + i sin kO

Multiplying both the sides of the above equation with (cos 0 + i sin 0)
we get

(cos O + i sin B)* (cos k O + i sin 0) = (cos kO + i sin kO) = (cos O
+ i sin 0)

(cos © + i sin 0)*"! = cos k 0.cos © + i sin kO cos O

+ i cos kO sin 0 + 72 sin kO sin O

(cos k B.cos 6 — sin kO sin 0) + i(sin £ O cos 0 + cos kO sin 0)

cos (kO + 0)+isin (kO + 0)
=cos(k +1)0+isin(k+1)6
= RHS.

. p(k+ 1) 1is true.

By the principle of mathematical induction. P(n) is true for all positive

integers n.
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MODULE - | i.e., (cos O +isinB)"=cosnO+isinnd forall n e Z°.
Algebra | Case(ii) Let n =0 then LHS = (cos 0 + i sin 0)° = 1

m = cos 00 + j sin 00
Notes

= RHS.

Hence (cos O +isin )" = cosn 0 +isin nO is this case also.
Case(iii) Let n be a negative integer and n = —m where m € Z".

1
(cosO+isin0)"

. LHS= (cos 0 +isin0)” = (cos O +isin )™=

1

= — form case (i
cos m0 + i sin mO (1)

cosm O —isinmb

cos? m0O+i% sin® mo

cosm0O —isinm0

cos® m0O +sin’ mo

= cos(—m)0 + i sin (— m)0O
= cos nB + i sin n® = RHS.
Example 2.1: Simplify : (cos 2a + i sin 2a)® . (cos 3o — i sin 3a)°

Solution: GE = (cos 12a + i sin 12a) (cos 15a — i sin 15a)

= (cis 12a) [cis (~15a)]

=cis(12 a — 15a) = cis (-3a) = cos 3a — i sin 3a.

Example 2.2: If x =cis o and y = cis  and find xy+i.
Xy

1 .
Solution: xy =cisa . cisp =cis(a+p), then E =cis [—(0, + B)]
= Xy +L =cos(a +B) +isin(o+ ) +cos(o + ) —isin(o + )
Xy

= 2cos(a + PB).
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Example 2.3 : If #n is a positive integer, show that
ac nm
A+)"+(1-0)" =22 COS(T]

Solution : 1+i=\/—(T+z\/_j \/_(cosgﬂ'sin%j

1_’—\f((—l7j \E(cosg—isingj

1+0)" =(v2) | cosZ+isinZ | =2"%| cos™E +isin ™ |
(,)()[414} 7 FisinT ()

1-i)" =(2) | cosZ +isinZ | =2"%| cos = —isin " ii
(’)()[414} st
By adding (1) & (2) we get

(1+i)" +(1-i)" =2""* (200s%} 22 cos%.

== EXERCISE 2.5

I 1. Find the values of the following

(1) A+i3) (ii) (1 — 0)3 (i) (1 + )1

| NG i5 NG i5
™ |72 (272

2. If nis an integer then show that

(1 +cos O +isinB)"+ (1+cos0—isin0)"

= 2" cos” (QJ cos (n_@j
2 2

II.1. If a, B are the roots of the equation x> — 2x + 4 = 0 then for any

neN show that o + B = 271 cos(rg—nj.
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2. If cosa +cos P +cosy= 0=sina + sin B + sin y. Show that

3
cos?o + cos?B + cos?y = 5= sin? o + sin? B + sin? .

3. Show that (1 + )*"+ (1 + i)*"=2"" cos (n—znj where 7 is a positive

integer.
De Moivre's Theorem - Rational Index

p ) ) ) )
Theorem : If ; (¢>1) is a rational number, then cosp—e+z'51np—e 1S one

q q
of the q roots of (cos 0 + i sin 0).

Proof : Let 5 =2 so that ng = p. Since ¢ is a positive integer
q

(cos nO + i sin nB)? = cos ngH + i sin ngo
(cos nO + i sin nB)? = cos pO + i sin pO = (cos 6 + i sin O)

(cos nO + i sin n0) is one of the ¢ roots of (cos 6 + i sin O)

p s P ) .
= (cos;@-ﬁ-zsm;@j is one of the ¢ roots of (cos O + i sin 0)»¢

Note: Cosp—e+isinp—9 is one of the values of (cos 6 + i sin 0)"7.

q q

nt" roots of Unity

41 = (cos0+isin0)" = {cos(2km +0) +isin(2kn +0)}'""

2km\ . . (2km
= COoS| — |+1isIn e where k=0, 1,2, ... n — 1.

n

21
It can be seen that n™ roots of unity differ in argument by —, but have
n

the same modulus unity.

Complex Numbers Jill
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Graphically the " roots of unity are the points A|, A , .... A where
2 4
OA, =0A,=..=0A =1 and 4&0X=-f,zayoxzirj
n
ZA,0X = 2Zkm
n

Also the points lie on the circle with centre at the origin and with radius|

unity. These points divide the circle into » equal arcs.

2kn . . 2km 2n .. 2n)' ‘
. COS—— + 1 SIN—— = | COS—+1I1SIn— =
n n n n

n™ roots of unity are o, a!, o ... o'

l+a+a>+ .. +a'= - =0 (- a”=1)

. Sum of the n"™ roots of unity is zero.

Cube roots of Unity

The cube roots of unity are obtained by solving the equation x3 = 1.

x3=1=cos 0+ isin0=cos (2kr=0) + isin(2kn + 0)

The roots of the equation are x, where
0+2kn) .. (0+2km
X, =C0s 3 +isin 3 k=0,1,2

.. The cube roots of unity are

.. 2n . 2m 4t . . 4xm
cos 0 + i sin O; cos?+sm—, cos—+isin—

.27 .4
= 1, o, o* where w=cis== or cis—~

2 8n .. 8n
=CoS—+1isin—
3 3

4 . . 4n
[(-w=cos— +isin— = w
3 3
= w’ :cos(2n+23—nj+isin(2n+2?nj

2

2, . 2m
= w” =cos—+isin—]
3 3
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Note: 1 + w+ w? =1+ cos 120° + 1 sin 120° + cos 240° + i sin 240°

= 1—l+i£—l—i£ =1-1=0
2 2 2 2

Also wP=w . w?*=1.
1
Example 2.4 : Find the values of (1 n iﬁ)g.
Solution : Let 1+ iy/3 = r(cosO+isin@) =rcosO =1, rsin0 = NE)

B g

|
Then » =~+3+1 =2 and coseza, s1n6:7 =0= 3
1/5 2k /3
(i) = z[[—()j (uﬂ
5 5
where £k =0,1, 2, 3,4

= 2“%1{%) n, k=0,1,2,3,4

1/
The five values of (1 +i\/§ ) i are

25 cis u s 215 cis 7—n ,21/50is B—n ,21/Scis 19—n ,21/Scis 25—n
15 15 15 15 15 )°

Example 2.5 : Solve the equation x*+1 =10
Solution : Given x*+1=0 = x*=-1 = x=(- 1"

We have — 1 =cosnt + i sint = cos(2kn + m) + i sin(2kw + m)
1/4

= (-)"* = [cos(2k + Dn+isin(2k +)r]

- cis(2k+l)§, k=0,1,2,3

The four values of x are cis r , CIS 3—“ , Cis S—R , Cis 7—n
4 4 4 4

:>1+i —1+i -1-i l;z
NN RN )

Example 2.6 : If 1, w, w? are the cube roots of unity, prove that

@ 1+ w+w =0

b Ad-w+w)A+w-w?)=4

Complex Numbers Jill
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(© (IT+wP—-(1+w)=0
d (AQ-wH+wh=-8and (1+w-w?h>=-38
Sol: (a) 1+ w*+w =0

LHS = 1+ w? + wW?)?. w

= 1+w+w Cow'=1)
=0 (- 1+w+w’ =0)
= RHS

LHS = RHS.

® Ad-w+w)(d+w-w?)=4
LHS = (1 — w + w?) (1 + w — w?)
=(1+w-w{+w-w
=(w-w) —w=w?)  (cl+w=—w, 1+w=—w?)
= (= 2w) (- 2w?)
= 43 (o Wi =1)
— 4
= RHS
LHS= RHS
(€ (+wP-(1+w) =0
LHS =(1+w)-(1+wn?’
= (W) = (-w)’ (ol+w=-wh1+w =-w)
= — WS+ wd
= —(W) +w’
= (1Y + 1
=141
-0
= RHS
LHS= RHS.
B Complex Numbers
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(d) 1-w+w)=-8

LHS (1 —w+w?l
= (1 +w? - w)

= (—w-w)?

(i) LHS = (1 +w — w?)}
= (cw? — w2y
= (- 2w?)}
__gyb
= — 8wy
- _3.

— RHS
LHS = RHS.

8/3
1s

I+sinn/8+icosm/8
Example 2.7 : Show that one of the values of [ TS/ OFICoST }

l+sinmt/8—icosm/8

equal to —1.

2

. T T 3n .. 3xm
oo l+sin—+cos— =1+cos| — |+isin—
8 8 8 8

= 2cos’ 3_7c +2isin3—n . cos3—n
16 16 16

3n 3t .. 3n
=2c0S—| cosS— +isin—
16 16 16

Complex Numbers Jil
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LHS = 37 3 .. 3¢m
2c0S—| coS— —isin—
16 6 16

16
i 3t .. 3m Al
= || cos==+isin=— || cos=— +isin—
(16 16 16 16

16

3n .. 3m)\3
= | cos—+isin—
16 16
One of the values of thisiscos ® +isinnt = - 1 = RHS.

Example 2.8 : If (\/§+ i)loo = 2”(a +ib), then show that (a, b) = (—1, \/5)

( 1)
Solution : We have /3 +i = 2L§+5U = 2(c0s30° +isin30")

100
then (ﬁ +i) = 2'%(cos30° +7sin30°)'%

= 2'(c0s3000° +isin 3000)

= 2'"cos120° +isin120°]

:ZIOO[_l”ﬂ

22
100
Given (\/§+i) =299(a+ib):>210{—%+i§}=299(a+ib)
= 2”(-1+i3)=2"(a+ib)= a=-1,b=13

(a, b) = (—1,J§).
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II.

~ (cos50+isin 50)*(cos 20 +isin 20)’
Simplify - 20— isin 20)%(cos 30 + 7sin 30)°

(cosa.+isina)'? (cos 2B —isin 2p)'°

Simplify (sino+icosa)’

Find all the values of
(i) (1-iV3)" (if) (= §)/6 (ifi) (1 +9)*3
(iv) (- 16)" (V) (=32)5

If A, B, C are angles of a triangle such that x =cis A, y=cis B, z =

dis C, then find the value of xyz.

If 1, w, w? are the cube roots of unity, then prove that

1 N 11
24w 1+2w  1+w

(1)
(i) 2-w) (2 —-w) Q2 -w 2 -wl) =49

(iii) (x +y +2z) (x +yw +zw?) (x + yw? + zw) = x3 + 3 + 23 — 3xyz.

Solve the follwing equations.

i x*-1=0 (i) x> +1=0

(i) XX -x>+x*-1=0

Find all common roots of x!2 - 1=0 andx* +x2+ 1 =0.

. If the cube roots of units are 1, w, w?, then find the roots of the

equation (x — 1) + 8 = 0.

Find the product of all the values of (1 + i)*>.
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5.

6.

1
If x+l=2005a and y+—=2cosf, then prove that
X y

xy+L =2cos(a+)
Xy

If o and B are the roots of x> — 2x + 4 = 0, then prove that

o + 7= 2 cos(%}

KEY WORDS

@

(i)

z = a + bi is a complex number in the standard form where a, be R
and i =+-1.

Any higher powers of’1’ can be expressed in terms of one of the four
value, i, -1, —i, 1.

Conjugate of a complex number z =a + bi 1is a — bi and is denoted
byz .

Modulus of a complex number z =a + bi is /42 4 p2 i.e., |z|=|a + bi]
@ [2/=0 < z=0 (b) |z =1Z| (©) lz; + 25| <z + 1z
z =r(cos 0 + i sin 0) represents the polar form of a complex number

z=a + bi.
r =+a*+b> is modulus and = tan" (éj is its argument.

a

Multiplicative inverse of a complex number z =a + bi is Lz
|z |

It is customary to write cis 0 for cos 0 + i sin 0.

Thus we may state that Demoivre's theorem as (cis0)” = cis n0, if neZ.

(cos O +isin ) " = cos(—n)0 +1sin (-n) O =cosn O —isinn 0O

provided '»' is an integer.

MATHEMATICS
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iii) (cos O + i sin 0) (cos O — i sin 0) = cos?0 — i%sin’0
(1) (

= co0s%0 + sin%0 = 1

1 1

. cosO+isin0 = cosf—isin@=———
cos0+1isin®

5

cosO—isin0

1 n
i cosO—isin@)' =| ———
@) ( ) [coseﬂ'sin@}
= (cosO+isin0)™" =cosnb—isinnO
provided '»' is an integer.

(V) cis®.cis ¢ =cis(0+¢) forany 6, ¢ € R

(vi) n' root of a complex number : Let n be a positive integer and z, # 0

be a given complex number. Any complex number z satistying z" =z,

is called an nth root of z, and is denoted by z" or 4z, .

SUPORTIVE WEBSITES

e http:// www.wikipedia.org

e http:// mathworld.wolfram.com.

PRACTICE EXERCISE

1. Find real and imaginary parts of each of the following:

(a) 2+7i (b) 3+ 0i () —%

) 1
(d) 5i © 53
2. Simplify each of the following:

(@) J-34-27 b)-34~4 -T2

(c) 3i-58+1
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3. Form complex number whose real and imaginary parts are given in the

10.

form of ordered pairs.

(@ z(3,-5) (b) z(0,-4) (© z(8,m
Find the conjugate of each of the following:
(@) 1-2i b -1-2i  (© 6-2
(d) 4i (e) —4i
. Find the modulus of each of the following:

3.
(@ 1-i (b) 3+ mi (©) —El
@ 2445

Express 7il7 — 6i® + 3i3 — 22 + 1 in the form of a + bi .

Find the values of x and y if:
@ (x—y))+7-2i=9—-i
(b) 2x+3yi=4-9i
() x—3yi=7+09i

Simplify each of the following:
(@ B@+H)—-(1-i)+(-1+i0)

o (545152

. Write additive inverse and multiplicative inverse of each of the following:

(@) 3-7i (b) 11-2i (©) 3+2i
1+5i
(d) 1-2i © 75
Find the modulus of each of the following complex numbers:
1+i S+2i . .
@ 5 ® G © G-

(d) (1-3i) (=23 +i2+3)
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MODULE -1 | 11. For the following pairs of complex numbers verify that},, z,| = |z, | |z,|

Algebra (@) z,=3—2i,z)=1-5i

mNotes (b) z,=3-7i, z, =3 -i

12. For the following pairs of complex numbers verify that = Izl

|z, |

Z

2

(@ zy=1+3i,z,=2+35i
(b) zy=-2+5i, z,=3-4i
1. If cosa +cos B+ cosy=0=sina + sin 3 + sin y then show that
(1) cos 3a + cos 3B + cos 3y = 3cos(a + B +7v)
(i) sin 3o + sin 3 + sin 3y =3sin(a +  + )
(i) cos (a+P)+cos(P+y)+cos(y+a)=0.
2. If 1, w, w? are the cube roots of unity, prove that
1) (I —w+w)s+ (1 —w?>+w)bt=128
=(1-w+w)+ ({1 +w-w?
(i) (a + b) (aw + bw?) (aw? + bw) = a® + b3
(iii) x> +4x +7 =0 where x =w — w? — 2.
3. If a, B are the roots of the equation x>+ x + 1 =0 then prove that
a* + B+ o't = 0.

4. If 22 +z+1=0, where z is a complex number, prove that

2 2 2 2

(z+lj +(22+Lj +(z3+LJ +(z4+ij
2 3 4
z z z z

2 2
+(zs+isj +(z6+iéj =12
z z
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2n
5. If z=—cos 0 +isin 0, then show that 22 —1 =itan0, 1 being an
z7"+1

integer.

6. If a=cosa+isina,b=cosP+isinf3,c=cosy+isiny
and a + b + ¢ = abc, then prove that

cos (B—y) + cos (y — a) + cos(a—PB) + 1 =0

EXERCISE 2.1

1. (a) 3.3 (b) -3i © J13i
2. (@) 5+0i (b) 0-3i ©) 0+0i
3. 12— 4

EXERCISE 2.2

1. (a) 2i (b) -5+ 3§ (c) 2 @ 3+ 4i
2. (a)
(-3, 0) (2,0) (3,0)
X s
y|
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(b)
0, 4)
0, 2)
i —t——¢ >
)
(09 _3)
(0, =5)
yv
Y
(©) 2,5)
T
(-4.3) F
(-7.2) ] I 52
I I (et [E
X/I!Illllliil!!i!‘!llll
Lo or |
(-9,-2) -ll— L |1
| ___:_l (3,-4)
I
L e
(_2’__9)|__.
yl
y
4 N
(d) 3, 4}_ : -
T |
| [
(4,1 _1_ L1 :
P e o T I T M
: (—1,~1)L’;_D——:"(4, 1)
] L
i SR Y
corsh——— T 70
yl
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©) oy
N
(6,7)
T
(-3,4) i I
177 |
I
: L (1,1) 1
X Ay >
(-5,—1)1[* | Tta-n
Lt |
pirs S
34 1 |
______ —(6,-7)
4
J
yl
3. () ()3 (i) 10 () 13 (V) 21

EXERCISE 2.3

L @ (V2+45)+(V5-+2)i

(b) %(6+i)

(c) 7i (d) V2(V2+D)+(7-3)
2. (a) 11 +3i (b) 11+ 3i (c) Yes
) -1-i () 1+i H No
3. (a) 4+3i (b) 4+ 3i (c) Yes
d) 2+ 5i () —2—i H No
4. (a)—12 +7i (b) —4 + 3i
5. 18 — 6i

B Complex Numbers

MODULE - |
Algebra

Notes ﬁD




| 311 Mathematics Vol-|(TSOSS) |
MODULE -1| EXERCISE 2.4

Algebra
§ Lo (V2+2)+(2v2-1)i  (b) 1+2V2i
Notes 1
(c) =2+ 6i (d) g(—4+7i)
1 ) 1 .
(e) 5(3+1) (f) 5(3—71)
2. (a) %5(3+4i) (d) 5%(@—71')

©) i(—9—19i)

EXERCISE 2.5
L 1. ()-8 (i) 16 (iii) 256 (iv) i
EXERCISE 2.6

I. 1. cos(140) + i sin (140)

2. sin (17a — 20 B) — i cos (17a — 20 B)

3. (i) 2"cis(6k —1)%, k=0,1,2
(i) cis(4k 1)%, k=0,1,2,3,4,5
(i) 2" cis(4k + 1)%, k=0,1,2
(iv) 2 cisk+ 1)%, k=0,1,2,3

v) 2 cis(2k+l)§, k=0,1,2,3,4
4. —1
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1. () +1, +i Algebra

(ii) cis(zk;ljﬂ, k=0,1,2,3,4 Notes ﬁD

o 3n
sy 1, 26 cis| £— |, cis| £—
(i) ( 5] ( sj

T .2 . 4m . Sm
2. cis—, cis —, cis—, cis—
3 3 3 3

3. =1, 1=2w, 1 —2w?

4. -4

PRACTICE EXERCISE

1. (a) 2,7 (b) 3,0
(c) —%’0 (d) 0,5
(e %a—g

2. (@) -9 (b) —126i
(c) —4—3i

3. (a) 3-5i (b) 0 -4
(c) 8+ mi

4. (a) 1+ 2i (b) -1+ 2i
(©) 6+2i (d) —4i
(e) 4i
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MODULE -1| 5. @ 3 ® Jorr
Algebra
3
m (c) ) (d) \/7
Notes
6. 9+ 4i
7. (a) x=2, y=-1 b)) x=2, y=-3

8. (a) 1+3i (b) %+Oi
9. (a) —3+7i,5—18(3+7i)

(b) —11+2i,é(—11+2i)

© —ﬁ—zi,%(ﬁ—%)

() —1+\/§i,§(1+\/5i)

1
2-3i, —(2+3i
(e) 13'( )

1
10. () 75 (b) %M
(©) 26 (d) 45
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Chapter

QUADRATIC EQUATIONS

After studying this lesson, you will be able to:

LEARNING OUTCOMES

® solve a quadratic equation with real coefficients by factorization and by

using quadratic formula;
e find relationship between roots and coefficients;

® form a quadratic equation when roots are given;

PREREQUISITES

® Real numbers

® Quadratic Equations with real coefficients.

INTRODUCTION

Any equation that can be expressed in the formax? + bx + ¢ = 0, where

a, b, c € Cwith a # 0 is called a quadratic equation in x. Here a, b, c are

called coefficients.

The form ax? + bx + ¢ = 0 the standard form of quadratic equation

in x.

M| Quadratic Equations
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e.g. 5x2 + 8x = 2x + 4 which can be expressed as 5x> — 10x — 4 =01is a
quadratic equation.

In this lesson we will discuss how to solve quadratic equations with real
and complex coefficients and establish relation between roots and coefficients.
We will also find the sign of quadratic expressions, change in signs and
Maximum and Minimum values.

BN ROOTS OF A QUADRATIC EQUATION

The value which when substituted for the variable in an equation, satis-

fies it, is called a root (or solution) of the equation.

If o be one of the roots of the quadratic equation
then, ax* +bx +c=0,a # 0 ..(0)
ao® + bo + ¢ =0
In otherwords x — a is a factor of the quadratic equation (1)
In particular, consider a quadratic equation x>+ x — 6 =0 ... (ii)
If we substitute x =2 in (ii) , we get
LHS. =22+2-6=0
L.H.S. = R.H.S
Again put x = -3 in (i) we get
LHS.=(-3)?-3-6=0
L.H.S. =R.H.S
Again put x = —lin (i) we get
LHS. =1+ (1)-6=-6 # 0=R.H.S

. x=2 and x = -3 are the only values ofx which satisfy the quadratic
equation (ii)

There are no other values which satisfy (ii)
. x=2and x=-3 are the only two roots of the quadratic equation (ii)
Note: If o, B be two roots of the quadratic equation
ax* +bx+c=0; a=# 0 (A)

then (x — a) and (x — B) will be thefactors of (A). The given
quadratic equation can be written in terms of these factors as

r-a) x=P)=0
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3 SOLVING QUADRATIC EQUATION BY
FACTORIZATION

Recall that you have learnt how to factorize quadratic polynomial of thg
form P(x) =ax?>+ bx +c. a # 0 by splitting the middle term and taking
the common factors. Same method can be applied while solving quadratic equation

by factorization.

pP r . .
If X _g and x—— are two factors of the quadratic equation
s

p r
ax*+ bx +c=0,a # 0 then {x—;) (x_;j=0-

. r
either x = P or, x=—
q s
. . r
. The roots of the quadratic equation ax? + bx + ¢ = 0 are £, —.
q s

Example 3.1 : Using factorization method, solve the following quadratic equation:
6x> + 5x — 6 = 0.
Solution: The given quadratic equation is
6x> +5x —6=0 o (1)
Splitting the middle term, we have
6x>+9x —4x—-6=0
or Ix2x+3)-22x+3)=0
or 2x+3)Bx-2)=0

3
.. Either 2x +3 =0 :>x:—§

2
or 3 x-2=0 :>sz

W | N

. . . -3
.. Two roots of the given quadratic equation are EX
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MODULE - | Example 3.2 : Using factorization method, solve the following quadratic equation:
Algebra 3J2x2+7x-3J/2 = 0.

m Solution: Splitting the middle term, we have
Notes

3232 +9x-2x-3J2 =0

or 3x(v2x+3)-v2(2x+3)=0

or (2x+3) (3x=+/2)=0
Either 2 x+3=0 = x:_Tz

or 3x—\/§:0 :x:g

3 2

.. Two rootsof the given quaratic equation are ﬁ’ ER
Example 3.3: Using factorization method, solve the following quadratic equa-
tion:

(a + b)? x>+ 6(a®> — b*) x + 9(a — b)> =0.
Solution: The given quadratic equation is
(a + b x>+ 6(a’>—b*>)x+9a-b)> =0
Splitting the middle term, we have
(a+ b)? x*>+3(a*>—-b>) x +3(*-b>)x+9a-b)? =0.
or, (a+b)x {(a+b)x+3(a->b)}+3(a->b){(a+b)x+3a-

bt =0
or, {(a+b)x+3@-0b)}.{(a+b)x+3a-b)}=0
either (a + b)x+3(a—-b)=0 :x:—3(a—b):3(b—a)
¢ ' ¢ a+b a+b
o, (@tbhxt3a-by=0 = x=—wd _3-a)

a+b a+b

.. The equal roots of the given quadratic equation are

3(b—a) 3(b—a)
a+b ~ a+b

Quadratic Equations |l




[ 311 Mathematics Vol4(TSOSS) |

Alternative Method
The given quadratic equation is
(a+ b)? x> +6(a>-b>)x+9a->b? =0
This can be rewritten as
{(a+b)x}?> +2a+b)x.3(@—-b)+ {3(a-b)}*>=0
or, {(a+b)yx+3a-b)}>=0

‘e —3(a-b) 3(b-a)
a+b a+b

or,

3(b—a) 3(b—a)
a+b ~ a+b

e EXERCISE 3.1 T

1. Solve each of the following quadratic equations by factorization method:

.. The quadratic equation have equal roots

() 3x*+10x+8/3 =0 (i) x> -=2ax+a*>-b=0
ab ¢ )
(1) x2+(7—zjx—1=0 (iv)x* —4J2x+6 =0

Y SOLVING QUADRATIC EQUATION BY
QUADRATIC FORMULA

Recall the solution of a standard quadratic equation
ax> +bx +c=0,a # 0 by the “Method of Completing Squares”

Roots of the above quadratic equation are given by

—b++b* —4ac —b—~/b* —4ac
X = and x, =
2a 2a
3 ~b+~/D 3 -b-D
2a 2a

where D =b?—4 qc is called the discriminant of the quadratic equation.
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MODULE - 1| For a quadratic equation ax’> + bx +c=0,a # 0 if

Algebra (1) D > 0 the equation will have two real and unequal roots
§ (i) D = 0 the equation will have two real and equal roots and both roots
Notes

-b
are equal to —.
2a

(ii1) D < 0 the equation will have two conjugate complex (imaginary) roots.

Example 3.4 : Examine the nature of roots in each of the following quadratic
equations and also verify them by formula.

() X2 +9x+10 =0 (i) 99> —62y+2=0
(i) V22 =3t+3/2=0
Solution: (i) The given quadratic equation is x> + 9x + 10 =0
Here, a=1, b=9 and c¢=10
D = b - 4dac =81 - 4.1.10
=41 > 0.
. The equation will have two real and unequal roots.

Verification: By quadratic formula, we have

x_—9i\/ﬂ
2

.. The two roots are

—9++/41 —9-/41
2 2

which are real and unequal.
(ii) The given quadratic equation is 9y* — 632 y+2=0
Here D = b? - 4ac
= (-6v2)° ~4(9)(2)
=72 -72=0.
The equation will have two real and equal roots.

Verification: By quadratic formula, we have

_6\2:\0 V2
oo 3
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2 2
The two equal roots are 33

(ii1) The given quadratic equation is 212 =3t4342=0
Here, D= (-3)"-4(+2) .3v2
=-15<0

.. The equation will have two conjugate complex roots.

Verification: By quadratic formula, we have

3+4-15
22

N .
=3_\/El, where i =v/-1
22

3415i 3-+/15i

T jugat I t ’ '
WO conjugate complex roots arce 2\/5 2\/5

Example 3.5: Prove that the quadratic equation x>+ py — 1 =0 has real
and distinct roots for all real values of p.
Solution: Here, D = P? + 4 which is always positive for all real values of p.

". The quadratic equation will have real and distinct roots for all real
values of p.

Example 3.6: For what value ofk the quadratice equation
(4k + x> + (k + Dx + 1 = 0 will have equal roots?
Solution: The given quadratic equation is
Gk+Dx>+k+Dx+1=0
Here, D = (k + 1)> — 4(4k + 1).1
For equal roots, D =0
(k+ 12 -44k+1)=0
= K —-14k-3=0

_14£+4196+12

2

k
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MODULE - | or k- 14 ++/208
Algebra 2
ﬂg = 74213 or7+2413, 7-2413
Notes

which are the required values of k.

Example 3.7 : Prove that the roots of the equation
x% (a? + b?) + 2x(ac + bd) + (c¢* + d*) = 0 are imaginary. But if
ad = bc, roots are real and equal.
Solution: The given equation is x? (a® + b?) + 2x(ac + bd) + (c*> + d*) = 0
Discriminant = 4(ac + bd)> — 4(a®> + b*) (c* + d?)
= 8abcd — 4(a* d* + b*c?)
= —4(-2abcd + a*d®> + b*c?)
= —4(ad - bc)?

A

0 forall a, b, c, d.

". The roots of the given equation are imaginary.

For real and equal roots, discriminant is equal to zero.
= ~4(ad — bc)> = 0

or ad = bc

Hence, if ad=bc, the roots are real and equal.

e EXERCISE 3.2 [

1. Solve each of the following quadratic equation by quadratic formula:
@) 2x2-3x+3=0 (i) —x* +v2x-1=0
(i) —4x*+/5x-3=0 (iv) 3x2+~2x+5=0

2. For what values of & will the equation

y>— 2(1 + 2k) y + 3 + 2k = 0 have equal roots?
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3. Show that the roots of the equation
x—-a)(x-b)+(x—-b)(x—c)+ (x—rc)(x —a) are always real
and they can not be equal unless a = b = c.

N3 RELATION BETWEEN ROOTS AND
COEFFICIENTS OF A QUADRATIC EQUATION

You have learnt that, the roots of a quadratic equation

ax*+bx+c=0,a# 0

—b++b* —4ac —b—b* —4ac

are and
2a 2a
—b++b* —4ac . —b—+Ib> —4ac ..
Let a= 5 ... (1) and B = 5 ... (1)
a a

Adding (i) and (i1), we have

-2b b
a+pf=—=—
B 2a a
Sum of the roots = coefficient of x2 = b ... (111)
coefficient of x a

_ +b” —(b* —4ac)

4q°
4ac
T ad
c
T4
Product of the roots = const?nt term = c i)
coefficient of x a

(iii) and (iv) are the required relationships between roots and coefficients
of a given quadratic equation. These relationships helps to find out a quadratic

equation when two roots are given.
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Example 3.8: If a, B are the roots of the equation 3x*> — 5x + 9 = 0 find

the value of:

2 @2 1.1
(@) o+ () oc2+ 2

B

Solution:

(a) It is given that a, B are the roots of the quadratic equation

332 -5x+9=0

'.0c+[3:§ ..... (i)

and a-B:§:3 ..... (i1)

Now o’ +B? = (a+p)* —20-p

5)? . )
= (Ej -23 [By (i) and (i1)]

. . 29
. The required value is By

1 1 o’+p

(b) Now, ?+? _a2—[32

2
_ T9 [By (i) and (i1)]
2

81

Example 3.9: If a, B are the roots of the equation 3y + 4y + 1 =0 form
a quadratic equation whose roots are a2, B2.

Solution: It is given that o, B are two roots of the quadratic equation

332+ 4y +1=0.
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Sum of the roots

. coefficient of y

e, o+pB=- : 5
coefficient of y
4 .

-—= i
5 ()
. constant term
Product of the roots i.e., a, B =

coefficient of y*

r . (i)
3
Now, o?+p? = (a+P)*—2a-B
) o
5) 213 [By (i) and (ii)]
_16_ 2
9 3
10
9
2 2 1 .
and o”-f7 =—. [By (i)]
The required quadratic equation is y* —(a.® +p*)y+a’-p*> = 0
, 10 1
-——y+—=0
or y 9y 5
or 92 — 10y + 1 = 0.

Example 3.10: If one root of the equation ax?> + bx + ¢ =0, a # 0 be

the square of the other, prove that b3 + ac? + a’c = 3abc.

Solution: Let o, a? be two roots of the equation ax?> + bx + ¢ =0

a+a’ b i
= - o g
- (i)
2 C
and o-o° = —
a
3 c ..
le., a = — ces (11)
a
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MODULE - | From (i) we have
Algebra a(a+1)= -2
a
mNotes H J
or, {a(a+1)} = (——] ==
a a
3
or, o’ (0’ +30’ +30+1) = ——
a
< £+3(—éj+1 __E Bv () and (ii
o ala a a’ ..[By (1) and (i1)]
Or. i—?,b—c+£ = _i
) a2 a2 a a3
o, ac® — 3abc + a*c = b
or, b + ac® + a’c = 3abc.

which is the required result.
Example 3.11 : Find the condition that the roots of the equation
ax?> + bx + ¢ = 0 are in the ratio m : n

Solution: Let ma and na be the roots of the equation

ax’* +bx+c=0

b
Now, ma+na = . . (1)
2 _ ¢ ..
and m-n-o =— ... (1)
a
. b
From (i) we have, a(m+n)=——
a
2
or, a’(m+n)* = —
a
b .
or, £(m +n)? =mn — [By (i1)]
a a
or, ac(m + n)> = mnb?

which is the required condition.
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E " EXERCISE 3.3 sl BT T o[V N

1. If a, B are the roots of the equation ax? + bx + ¢ =0 then find Algebra

the value of: ﬁD
Notes

~ 1 1 .11
) —+— 1) —(+—

B B

2. If «, P are the roots of the equation 5x?> — 6x + 3 = 0, form a

quadratic equation whose roots are:
@ o, p? (i)) a’B, ap’
3. If'the roots of the equation ax?+ bx + ¢ =0 be in the ratio 3:4, prove

that 125> = 49ac.

4. Find the condition that one root of the quadratic equation

px?> — gx + p = 0 may be 1 more than the other.

NN SOLUTION OF A QUADRATIC EQUATION
WHEND < O

Let us consider the following quadratic equation :

(a) Solve for
P+3t+4=0

_3ENO-16 _ 3%T

2 2
Here, D=-7<0

The roots are ﬂ and _3_— /=7
2 2
3++/7i -3-/7i
2 72

Thus, the roots are complex and conjugate .
(b) Solve for "'

—3y2 +5y-2=0
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MODULE - | o 5E5-4(-3)(-2)

R
Algebra 2(-3)

—J5+4-19
mNotes or YT

Here, D =-19<0

54190 -5 -J19i
-6 ’

-6

The roots are
Here, also roots are complex and conjugate. From the above examples,
we can make the following conclusions:
(1) D < 0 in both the cases.
(1) Roots are complex and conjugate to each other.
Is it always true that complex roots occur in conjugate pairs?
Let us form a quadratic equation whose roots are 2 + 3iand 4 — 5i
The equation will be {(x — (2 +3i)}{x — (4 - 5i)} =0
or, W -2+3)x-@ -5+ Q2+3)@4-5)=0
or, X2 = (=6 +2)x+23+2i=0
which is an equation with complex coefficients.

Note: If the quadratic equation has two complex roots, which are
not conjugate of each other, the quadratic equation is an equation

with complex coefficients.

N3 SIGN OF QUADRATIC EXPRESSIONS, CHANGE
IN SIGNS

In this chapter, we discuss basic concepts of quadratic expressions, extreme

values, changes in sign and magnitude.

The quadratic equation ax® + bx + ¢ =0 depemds on the coefficient
'a' of x? and the nature of the roots. Here a, b are non zero real numbers,
we say that a and b have the same sign, if both a and b are positive or both

of them are negative.
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1. Theorem : The roots of ax?> + bx + ¢ = 0 (where q, b,c € R real
coefficients, a # 0) are non real complex numbers if and only if ax? + bx +

c and a have the same sign for all x e R.

Proof : The condition for the equation ax*> + bx + ¢ =0 to have non-real

complex roots is b*> — 4ac < 0.

a a

a2 {2+
=a|xX +2—x+|—| —-| —| +—
2a 2a 2a a

_( b jz dac —b?
=a||x+— | +———
2a 4q>

b ¢
ax* + bx +c=a [x2+—x+—

ax’ +bx+c b\ dac—b
Now ——————= | X+t _—| +——F—
a 2a 4a
] ] dac—b*
Now the right hand expression becomes = 4—2 .
a

ax® +bx+c

Hence if 4ac — b* > 0 the >0 Hence for all real values

a
of x, the expression ax? + bx + ¢ and a have the same sign.

Theorem 2. If the equation ax*> + bx + ¢ = 0 (where a, b,c € R and

a# 0) has equal roots, then 'ax?> + bx + ¢' and a have the same sign for

all real x, except for x = —i.
2a

Proof : The condition for having equal roots is b? — 4ac = 0.

ax® +bx+c [ bjz
——=|x+—| >0
a 2a

_-b

0 if g
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mNotes

. Hence, for all real x, except for x = ;_a the expression ax? +
bx + ¢ and a have the same sign.
Theorem 3. o, B (o < B) are the real roots of ax?> + bx + ¢ =0

(i) for a <x <P, ax* + bx + c and a have opposite signs

(ii) for x <a or x> B, ax?>+ bx + c and a have the same sign.

Proof:ax2+bx+c=a(x—a)(X—B)

ax® +bx+c

=x-a)(x-Pp (1)
a

(1) When o <x <p, wehave x —a > 0and x — 3 <0 so that, by

(D

ax’ +bhx+c
- =  —<0.

a

Hence ax? + bx + ¢ and a have opposite signs.
(@) When x<a, x—a <0and x-B<0 (- a<Bf),

2
+bx +

so that by (1) u>0.
a

when x <, x—-pB>0and x—a >0 (--p > a) so that

2
b
by (1) ax +ax+c>0

Thus for x <a or x> B, ax?+ bx + ¢ and a have the same sign.

Example 3.12: When x is a real number (x € R) discuss the sign of the
expression x> — 5x + 4.

Solution: Comparing with ax? + bx + ¢, we have a=1, b= -5, ¢ = 4.
Discriminant A = 5> —4ac=25-16=9>0
The roots are real and distinct.
- Sx+4=x-Dx-4)=0
roots are x =1, 4
Coefficient of x> is a=1>0

o 1 <x< 4then x?> - 5x + 4 and the coefficent of x?have opposite signs.

Quadratic Equations il




| 311 Mathematics Vol4(TSOSS) |

MATHEMATICS

Also, if x <1 or x > 4, then x? — 5x + 4 and the coefficient of x> | MODULE - |
have the same sign. Algebra
(i) Hence, forcase 1 <x <4, x>-5x+4<0. ﬁD
Notes

(i) for x <1orx>4,x*-5x+4>0 [ie., xe(-o,1)U(4,x)]
(i) when x =1 orx=4,x>-5x +4 =0.

Example 3.13 : Discuss the sign of the expression x> — x + 3.

b? — dac = (-1)? - 4(1)(3)
1-12=-11<0.

Solution : The discriminant A

A =0 and coefficient of x?isa=1>0then VxeR,x*—x+3>0

1+J11i
2

. These roots

The roots of the equation x> —x + 3 = 0 are

are non real, Therefore x2 — x + 3 and the coefficient of x> have the same

sign.
Hence x% —x + 3 > 0 for all real x.

g MAXIMUM AND MINIMUM VALUES

To find the methods of the extreme values of a quadratic expression.

It depends on the sign of the coefficient of x?.

Theorem 4: f(x) = ax®> + bx + ¢ is a quadratic expression (where

a,b,ceR, a#0)

dac —b?

x eR, 2 1S a number.
a

(1) If a>0, then f(x)has absolute minimum at x = ;_a and the minimum

dac —b*

value is
da
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(i) If a <O then f(x) has absolute maximum at x = —b and the maximum

Algebra 2a
m lue i dac—b?
Notes value 18 T
Proof :
2 2
f(x) = ax> +bx + ¢ = a(x+ij +M (1)
2a 4a
. dac —b* -b
(i) Leta >0, then f(x) S4— v x € R and when x :Z ,we have
a
dac—b*
f(x)=————by(1).
4q

. for a>0, f(x)has absolute minimum at X = % and the minimum

dac—b*

4a

value is

4ac —b* —b
@) If a<0, then f(x) S%vxeR and when X=z, we have
a

dac—b?

S(x)=——,by (1)
4a
] -b

o for a <0, fix) has a absolute maximum at X = and

. . dac-b*
the maximum value is 2

a

Example 3.13: Find the value of x at which the following expressions have

maximum or minimum
(1) ¥2-x+7 (i) 12x — x? — 32
(iii) ax?+ bx + a (iv) 2x — 7 — 5x?

Sol : (i) Comparing x>

b=-1,c=7

—x + 7 with ax?* + bx + ¢, we have a = 1,
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since a=1>0, x?—x+ 7 has absolute minimum value at ;_a :% MODULE -1
Algebra
- . dac-b> _AM(D-(=1)> 27
The minimum value is PR 20) =T Notes ﬁD

(i) Comparing 12x — x> — 32
we have a=-1, b=12, c=-32

- a = —1 < 0, the expression has absolute maximum value at
e
2¢ 2(-1)

The maximum value is

_dac=b’ _ 4(-1)(=32)-(12)*  128-144 -16
~ da 4(-1) —4 —4

=4

(i) (i) If a >0, the expression ax? + bx +a have the minimum value.

4(a)(a)-b>  4da’ b
4a 4a

. The minimum value =

(ii) Ifa <0, the expression ax?+ bx + a have the maximum value.

4(a)(a)-b? _ 4a* —b*

4q 4q

.. The maximum value «

(iv) Comparing with ax> + bx + c =0

we have a=-5, b=2,¢c=-7

4ac—b*>  H-5)(-T)-(2)> 140-4 +136 34

0 44 4(=5) 20 20 5

1
Since a <0, 2x — 7 — 5x* has absolute maximum at X :E

-34
. The maximum value is = T
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([ob]VINN R R X3 CHANGES IN THE MAGNITUDE OF A QUADRATIC
A|gebra EXPRESSION

mNotes Now we observe the changes in (magnitude) the value of the quadratic

expression ax? + bx + ¢ when the value of x varies in R.

f(x) = ax? + bx + ¢ can be written as
y =/ = 2a 4a
Ifa >0 Ifa <0

1. If "x approaches—", then f(x), |1. Ifx, "approaches —c" then f(x),

"approaches +o0 " "approaches —co "

2. If "x approaches +o" then f(x), [2. Ifx, "approaches+o" then f(x),

" approaches + oo " "approaches — oo ".
b dac—b> b 4ac—b’
3. If x=— then f(x)= 3. If x=—/thenf(x)=
2a 4a 2a 4a

-b
4. When x increases from —© to ( j 4. when x increases from — to

2a
b ‘
then f(x) decreases from +oto 24 ) then f(x), increases from
4ac—b* 4ac—b?
—© to
4a 4a
5. when x increases from __bto +o0, | 5. when x increases from __bt0+oo
2a 2a
. 4ac —b?
then f(x) increases from 2 then f(x), decreases from to +o0
a
4ac—b*
to —0.
4a
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Example 3.14: Find the changes in the sign of 4x —5x>+2 for x eRand | MODULE - |

find the extreme value. Algebra
Solution: Comparing the given expression with ax? + bx + c, ﬁD
Notes
we have a =-5<0.

4+ 16-4(5)(-2)

The roots of the equation 5x> — 4x — 2 = 0 are

2(5)
_ 4+\16+440  4+2V14
10 10
24414
5

whe the sign of

214 2+/14
n 5 <x< 5

4x — 5x% + 2 is positive, and

2-14 2+4/14
5 5

or x>

when x < the sign of 4x — 5x? + 2 is negative.

Since a < 0, the maximum value of the given problem is

4ac—-b" _4(=5))-(4> _-56 14
da A5 20 5

14

". The extreme value of the given expression is = 5

Example 3.15 : Find the changes in the sign of the expression x?> — 5x + 6

and find their extreme values.

Solution: Comparing x> — 5x + 6 with ax? + bx + ¢, we have a=1>0

The roots are 2 and 3, which are real.

o If 2<x <3, then x* — 5x + 6 and the coefficient of x?> have

opposite signs.
Also, if x<2or x >3 then x2—5x+ 6 and the coefficient of

x? have the same sign.

M| Quadratic Equations




MATHEMATICS | 311 Mathematics Vol4(TSOSS) |

MODULE - | Hence, forthe case 2 <x <3, x2—5x+6<0and forx<2 or
Algebra |x>3, x> =5x+6>0.
m o L daeob’ 40O -5 24-25 -1
Notes xtreme value = 12 20 2 .

Example 3.16 : Find the maximum or minimum value of the expression

3x2 + 4x + 1.

Sol : Comparing with ax’> + bx +c¢, a=3,b=4,c=1sincea=3 >0,

3x? + 4x + 1has absolute minimum —m value.

dac=b*> _4B3)DH-@* -1
40 43) 3

So that minimum value =

There is no maximum value for this expression.

L EXERCISE 3.4 o

1. For what values of x the expression x?> — 5x + 14 is positive ?
2. For what values of x the expression — 6x> + 2x — 3 is negative?

3. Find the value ofx at which the expression x> + 5x + 6 have maximum

or minimum.

4. Find the value of x at which the expression 2x —x? + 7 have maximum

or minimum.
5. Find the maximum or minimum values of the expression. 3> + 2x + 11.

6. Find the changes in the sign of the expression and extreme values of the
expression —5x% + 4x +2, (x€R)

7. Find the sign of the expression x>+ x +1 for xeR.

8. Find the maximum or minimum value of the qudratic expression.
(i) 3x% +4x+1 (ii) 4x — x> - 10
(iii) 2x — 7 — 5x? (iv) 3x% + 2x + 11
9. Find the changes in the sign of the expression 15 + 4x — 3x? and find

their extreme values.
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Theory of Equations

In the earlier classes, we have studied the linear Equations in one and
two variable, the rational integral function of x as a polynomial in one variable

and the solutions of quadratic equations.

In the previous chapter. We have learnt about the quadratic expres-
sions, quadratic equations more in detail. We have established certain rela-
tions between the roots and coefficients of quadratic equations. But in many
problems that arise in Science and technology we encounter equations of degree
higher than two. We now investigate the relations which hold between the
roots and the coefficients of equations of then™ degree and then discuss some

elementary properties in the general theory of equations.

3.9 EJAG IRV Teap[o])]

A function defined by f(x) = apx" +a;x" "' + a,x" > +...+a,, Where

ag# 0,ay,a,, ay ... a, are real or complex numbers and 7 is positive integer
or zero (n is a non-negative integer or whole number) is called a polynomial

function of degree n in x. ag, a;, a, ... a, are called the coefficients of f.
A polynomial is also denoted by g(x), A(x) etc.

Constant Polynomial : If n =0, then the polynomial consists of just one

term a,. Such a polynomial is called a constant polynomial.

Zero Polynomial : The function which makes the number 0 (all of whose
coefficients are zero) is called the zero polynomial. The degree of zero

polynomial is not defined the domain of each isR and range is a subset

of R.

MODULE - |
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Note:

1. The polynomial f(x) = ayx+a,, a,#0 isofdegree one and is called

a linear polynomial.

2. The polynomial f(x) = ayx” +a,x+a,, a0 is of degree two is called
a quadratic polynomial.

3. The polynomial f(x) = a0x3 + alx2 +a,x+ay, a,#0 is degree three
and is called cubic polynomial.

4. The polynomial f(x) = ayx* +ax* +a,x* +ayx+a,, a,#0is degree

four and is called a biquadratic polynomial.

5. Zero of a Polynomial: A number a is called a zero of the polynomial
f(x) iff f(a) = 0.
Polynomial Equation

If any two differently constituted polynomials are equal for some value
of x, then such a relation is called a polynomial equation.

The general form of an n'? degree polynomial equations is
apx" +a;x" " +a,x"* +...+a, =0, a,#0 denoted by f(x) =0 or g(x)=

0 or A(x) = 0 etc.

Degree of an equation: The exponent of the heightest power of x occurring

in the equation f(x) = 0 is called the degree of an equation.

Division Algorithm : Let f(x) and g(x) be the polynomials of degree n
and m(<n) respectively. Then there exist a unique pair of polynomialg(x) and
r(x) such that f(x) = ¢g(x) . g(x) + r(x) where either r(x)= 0 or degree
of r(x) <m. The polynomial ¢(x) has degree (n — m).

Remainder Theorem: If a polynomial f(x) is divided by (x — o) where

o is any complex number, then the remainder is f{(c.).

Proof: When f(x) is divided by (x — a) let g(a) be the quotient and

r (x) be the remainder.
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By division algorithm : f(x) = (x —a) g¢g(a) + 7 (x) .. (D)
where r (x) = 0 or degree of r (x) < 1.

Degree of r (x) <1 = degree of r(x) =0. Hencer (x) =r,

where r(, is a complex number.
ro 18 a complex number.
Now, substituting x = o in (1), we have : f(a) = 0. g(a) + 7 () =7,
Thus r, the remainder is f(o).

e ROOT of an Equation: Let f(x) = 0 be a polynomial equation and
o be a number. « is called a root of f(x) =0 iff f(a) = 0.

e Factor Theorem : If o is aroot of the equation f(x) =0, then
for (x —a) is a factor of f(x)or a isa zero of f(x). Conversely

if (x — a) is a factor of f(x), then a is a root of f(x) = 0.
Proof : Let a be a root of the equation f(x) =0, then f(a)=0....(1)
By division algorithm and the remainder theorem, we have:

f) = (x - a) glx) + fla)
Hence from (1), we have f(x) = (x — a) g(x)
= (x — a) is a factor of f(x).

e Conversely: Let (x — o) be a factor of f{x). Then (x — o) must divide

f(x) exactly.
Hence f(a) = 0.
= By definition a is a root of f{x) =0

Note: Every polynomial equation f{x) = 0 has a root real (or) imaginary.

MODULE - |
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MODULE - | e Fundamental Theorem of Alzebra : Every polynomial equation

Algebra f{x) = 0 of degree n > 1 has atleast one root real (or) complex.

mNotes e Every polynomial equation of degree » > 1 has only n roots real or

complex and no more.

The Relations Between the roots and the coeeficients.
Let us consider the n' degree polynomial equation
X+ p x4 pxX" P4+ p x+p, =0
Let a,, a,, ..., a, be its roots.
Then we have
X+ p X" X" p, X+ D,
= (x—oy)(x—ay)(x—az)..(x—a,)
= x" (a0 +.t 0, ) X"
+ (040l + Oy Oy + .o 0L, 10 ) X2 L (=1) 00y oo O
On equating the coefficients of like power of x in this equation and
denoting the sum of products of the roots taken r at a time by sr, we get

n
—h=85 = Zai (sum of roots)
i=1

n
pr=s = ) o (sum of the products of the roots taken two at a
1<i<j<n

time)

n
TP3=53 = Z ;% j%% (sum of the products of the roots taken three
1<i<j<n

at a time)

(-1)"p, = s, =0,0,0;....a, (Product of the roots)

Quadratic Equations il




[ 311 Mathematics Vol4(TSOSS) |

These equalities give the relations between the roots and the coeffi-

cients for any polynomial equation whose leading coeffcient is 1.
Note:
(1) If the leading coefficient in f{x) is a, then on dividing each term of the
equation f{x) =0 by a,#0, we get

a _ a _ a, a
B B IO e = e R

ay ay a4y ay
whose roots coincide with those of f{x) = 0.
In this case, the above relations reduce to

1 n n . —
-, S2 — 9 2o 0y ( 1) B ( ) fOI I <’ <
S SI" sn

Sl:

(i) We recall that in the case of quadratic equation ax? + bx + ¢ = 0 with

-b
roots o and B. o +P=—, afp ==
a a

(iii) For n = 3, we get a cubic equation x> + plx2 + p2x3 +p3=0
Let a, a, and o4 be its roots.
Then S, =o; +a, + oy =-p;
Sy = aqay + 005 a0y = py
and  S; = a 0,03 = —p;

(iv) For n =4, we get a biquadralic equation x* + p1x3 + p2x3 + psx

+p,=0

Let o, a, and a; be its roots.

Then S, =0, + o, +a; +o,=—p,
Sy = 0qay a0+ o0y T apas a0y T os0,= p)
S3 = 000 F 0,0y + 0030y + 0n00,= —P;

S4 = 040030 = py

M| Quadratic Equations
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MODULE - | | Example 1 : Form the polynomial equation of degree 3 whose roots are
Algebra |2, 3 and 6.
m Solution: The required polynomial equationis (x —2) (x —3) (x —6) =0
Notes

= —11x2 +36x-36=0

Example 2 : Find the relations between the roots and the coefficients of the

cubic equation 3x3 — 10x2 + 7x + 10 = 0.
Solution : Given cubic equation is 3x3 — 10x2 + 7x + 10 = 0

On dividing the euqgation by 3, we get
X —?x +—x+—=0 (1)

On comparing (1) with x° — p,x* + p,x* + p,x+ p; = 0, we have

10 7 10

s Pr =7 P3 =~

=7 3 3

Let a, B, y be the roots of (1). Then

7

10
and oapy = - p; =3

Example 3 : If 1, 2, 3 and 4 are the roots of x* + ax> + bx2 + cx +d =0
then find the value of a, b, ¢ and d.

Solution: Given that the roots of the polynomial equation are 1, 2, 3 and 4

then
Hrad+ b tex+d =x-1DEx-2)x-3)(x—-4)=0

e, x*+tad+ bl +tex+d =xt— 1003 +35x2 - 50x + 24 =0
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On equating the coefficients of like powers of x, we obtain
a =-10, b=35 c¢=-50 and d = 24.
Example 4: Find the sum of the sugares and the sum of the cubes of the roots
of the equation x3 — px2 +¢gx —r =0 interms of p, g, r.
Solution: Let a, b, ¢ be the roots of the given equation.
Then a+b+c=p, ab+ bc+ ca=q and abc =r.
Sum of the squares of the roots is
a2+ b2+ c2=(a+b+c)?—-2ab+ bc+ ca)=p* -2q
Sum of the cubes of the roots is
B +A=(@+b+c)(@+b+ct—ab - be - ca) + 3abe
= p(p*—2q-q) +3r=pp*-3q) +3r

Example 5: Let o, B, v be the roots of x> + px2 + gx +r = 0. Then
find

(1) ya? (i1) Zé if a, B,y are non zero.

(iii) o

Solution : Since a, B, vy are the roots of the given equation.

we have a+B+y=—p (1)
af + By + ya =g ..(2)
O'BY = —y (3)

() To find Za’

On squaring equation (1), we get
of + B+ y2 =2(ap + By +7) = p?
ie, o’ +2%ap = p?

ie, Xa’ =p°—2q

MODULE - |
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(i) To find 3+
o

le:l+—+l

a o Y
_ Pyray+op g
apy r

(i) To find Yo’
We know that
o + B4y = 3oy = (a+ B+y) (P + B+ v ap - Py -
yo)
=(@+B+7y) [(a+p+1?-3p + By +ya)]
ie., Ta’—3r = —p(@? - 3q)

Yo’ = 3pg — p> + 3r.

L EXERCISE 3.5 S

I 1. Form polynomial equations of the lowest degree, with roots as given
below.

() 1. -1,3 (ii)0,0,2,2 -2, -2 (i) 0,1,_73,_75

2.If «a, B,y are the roots of 4x*> — 6x> + 7x + 3 = 0,
Then find the value of of3 + By + ya.
3.If 1,1, o are the roots of x> — 6x2+ 9x — 4 =0 then find o.

4. 1f —1,2 and o are the roots of 2x3 + x> — 7x — 6 = 0, then
find o.

5.1f 1, -2 and 3 are the roots of x> — 2x?>+ ax + 6 = 0, then

find a.
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II. 1. Write down the relations between the roots and Coefficients of the | MODULE - |

biqua dratic equation x* —2x* + 4x> + 6x —21 =0 (Find s, s,, 5, Algebra

o sy
4 Notes

2. Write down the relations between the roots and coefficients of the

equation 6x* + 15x2 + 7x — 10 = 0

KEY WORDS

® Roots of the quadratic equation ax?> + bx + ¢ = 0 are complex and

conjugate of each other, when D < 0.

o If a, B be the roots of the quadratic equation

C
ax’> + bx + ¢ = 0 then OHB:—Q and 043:;-
a
Signs of quadratic expression

1. If the roots of ax?>+ bx +c =0 are imaginary (complex roots) then

for xeR, ax*+ bx + ¢, and a have the same sign.

2. Let a, B (o < P) be the real roots of ax?> + bx + ¢ = 0. Then
(i) xeR, a<x <P = ax?+ bx + c and "a" have opposite signs.
(i) xeR,x<a or x>B = ax?+ bx + ¢, and "a" have same signs.

dac —b*

3. The expression f(x) = ax*> + bx + ¢ and a number 1
a

(1) If a > 0, then f has minimum value.

(i) If @ <0, then f has maximum value.

4. (1) If a >0 then f(x) has absolute minimum value at x = ;_a and the

dac—b*

minimum value is
4a

M| Quadratic Equations
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(i1) If @ <0, then f(x) has absolute maximum value at X = ;_a and the

) . dac-b?
maximum value is .
a

SUPPORTED WEB SITES

e http://www.wikipedia.org

e http://mathworld.wolfram.com

PRACTICE EXERCISE

1. Show that the roots of the equation

2(a®> + b*)x*> + 2(a + b)x + 1 = 0 are imaginary,when a # b .
2. Show that the roots of the equation

bx>+ (b —c)x = ¢+ a— b are always real if those of

ax* + b(2x + 1) = 0 are imaginary.

3. If a, B be the roots of the equation 2x? — 6x + 5 =0 find the

equation whose roots are:

B 1 1

o -
B o ) ot B

@)

EXERCISE 3.1

4
Lo g i) a—b,a+b
b
i) ) 342,42
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EXERCISE 3.2 MODULE - |
. 3+15i e Algebra
1. (1) 4 (11) \/E
\/gi \/Ei . -2t \/%i Notes ﬁD
(lll) T (IV) T
2. 4, 1
2

EXERCISE 3.3

2 2 2 422
I G b —22ac (i) (b 2ac)4 2a°c
c c
2. (1) 25x*-6x+9=0 (i) 625x*> — 90x + 81 =0

4. g> - 5p>=0

EXERCISE 3.4

l. VYxeR

2. The coefficient of x? is negative
for all values of x in R.

3 x=2
’ 2

4. x =1

32

5. Minimum value= ?

14

6. Maximum value = ?

14

Extreme value = ?

2-14 2+14
<x<

when the sign of 4x — 5x* + 2 is positive.
2—-+/14 2++/14

when x < 5\/7 or, x > 5\/7,the sign of 4x — 5x*> + 2 is

negative.
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. x> + x + 1 and the coefficient of x*> have the same sign and V x,

X+x+1>0

-1
. (1) Maximum value = 3
(i1) Maximum value = - 6
: —34
(ii1) Maximum value = EN
: . 32
(iv) Maximum value = 3

-5 . . -
. when 3 <x <3, the expression is positive. when X< ooy >

49

3, the sign of the expression is negative and Extreme value = ER

EXERCISE 3.5

3.(0) 5x2—8x+5=0 (i) 10x2 — 42x + 49 = 0

(i) 25x2 — 116x + 64 = 0

1.G) x¥*- 3x*- x+3=0

(i) x® — 8x* + 16x* =0

(iii) 4x* + 12x3 = x> = 15x =0

2Z 3. 4 4—255
04 . o20_

l. s, =2, s,=4, s,=-6, s, =-21
2. 5,=0, s,=15/6, s, =-7/6, s5,=-10/6

PRACTICE EXERCISE

3.0 5x2-8x+5=0 (i) 10x2 — 42x + 49 = 0

(i) 25x2 — 116x + 64 = 0

Quadratic Equations il




Chapter

MATRICES

LEARNING OUTCOMES

After studying this lesson, student will be able to:

e Understand matrix notation.

e Identify the order of a matrix

e Define various types of matrices - square row, column, zero matrices.
e Calculate sum and product of matrices wehere possible.

e Define Transpose, symmetric and skew symmetry matrices.

PREREQUISITES

e System of linear equations, number system.

INTRODUCTION

The term matrix was apparents coined by sylvester about 1850, but was
introduced by Cayley in 1860. By a 'matrix' we mean an "arrangement" or
"rectangular array" of numbers. Matrices (Plural of matrix) find applications

in solution of system of linear equations, mathematical economics, quantam

105
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mechanics, transportation problems, frame works in mechanics. Matrices an

easily an unable for computers.

In this chapter we will discuss variable types of matrices algebraic operations
on matrices and then use the theory to find the solution of simultaneous linear

equations.

% DIFINITION (MATRIX)

An ordered rectangular array of elements is a called a martix. Usually,

we denote a matrix by a capital letter of English alphabets, i.e. A, B, X, etc.

Thus, to represent the above information in the form of a matrix, we write

3 23
A= 5 or |4 5.
3 2 3

N R

e In the above example the horizontal arragement of elements are called

rows and vertical arrangement of elements are called columns.

Note: Plural of matrix is matrices.

4.1.1 Order of a Matrix Observe the following matrices
(arrangement of numbers):

1 i 1 0 -1 -5

2 -1 . .
(a) [3 4} (b) i 1+ (c) 2 3 4 5
1+i 1 4 -1 -2 0

In matrix (a), there are two rows and two columns, this is called a 2 by
2 matrix or a matrix of order 2x 2. This is written as 2 x 2 matrix. In matrix
(b), there are three rows and two columns. It is a 3 by 2 matrix or a matrix
of order 3x 2. It is written as 3 x 2 matrix. The matrix (c) is a matrix of order
3Ix4.

Note that there may be any number of rows and any number of columns
in a matrix. If there are m rows and »n columns in matrix A, its order is m x

n and it is read as an m x n matrix.

Matrices
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Use of two suffixes i and j helps in locating any particular element of a

matrix. In the above m x n matrix, the element a, belongs to the i row and

Jj™ column.
ayp dp a3 o 4y iy
ayy Ay dyz3 0 Ay 0 Oy
L T e ¥ S £ % S O P
A=l . . . .
a; app a3 aij iy
_aml Ay Ap3 amj T Qg |

A= [aij], i=1,2,..,m, and

Example 4.1: Write the order of each of the following matrices:

23 |’ |
@) A 5} (ii) |4 (i) [2 3 7] (iv)
- 7
1 2 3
4 8 10
Solution:

(1) Since the martix has 2 rows and 2 columns, The order of the martix
1S 2x2

(1) Since the marix has 3 rows and 1 column the order of the matrix in
3x 1

(ii)) Since the matrix has 1 row and 3 columns, the order of the martix
is Ix3

Matrices
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(iv) Since the matrix has 2 rows and 3 columns, the order of the matrix
is2x3

Example 4.2: For the following matrix

[\ RN VS B ]

1
2
3

>

|
w o N
= RV I

(1) find the order of A.
(1) write the total number of elements in A.
(i) write the elements a,s, as,, aj, and az, of A.
(iv) express each element 3 in A in the form a; .
Solution: The order of the matrix
(1) Since 4 has 3 rows and 4 columns, A4 is of order 3 x 4.
(i) number of elements in A =3 x 4 =12
(i) a,; =2, a3, =2,a,,=4 and ay, = 6.
(iv) ayy, a3y and as;.

Example 4.3: If the element in the i th row and j th column of a 2x 3 matrix

A is given by % , write the matrix A.

. i+2j .
Solution: Here, @;=—7— (Given)

2

1+2x1 3 1+2x2 5 1+2x3 7

an = =5 = =5 4= =5

2 2 2 2 2 2

24+2x1 _ 24+2x%x2 _ 2+2x3

0 357
Thus A=[H 12 13} =12 2 2
) dy a4y 2 3 4

Matrices
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Example 4.4: There are two stores A and B. In store A, there are 120 shirts,
100 trousers and 50 cardigans; and in store B, there are 200 shirts, 150 trou-
sers and 100 cardigans. Express this information in tabular form in two differ-

ent ways and also in the matrix form.

Solution:
Tabular Form 1 Matrix Form
Shirts  Trousers  Cardigans
Store A 120 100 50 = [120 100 50}
Store B 200 150 1o 1200 150 100
Tabular Form 2 Matrix Form
Store A Store B
Shirts 120 200 120 200
Trousers 100 150 = 100150
Cardigans 50 100 >0 100
EXERCISE 4.1
1. Marks scored by two students
A and B in three tests are Test 1 Test 2 Test 3
given in the adjacent table. A 56 65 71
o o B 29 37 57
Represent this information in the

matrix form, in two ways

2. Three firms X, Y and Z supply 40, 35 and 25 truck loads of stones and
10, 5 and 8 truck loads of sand respectively, to a contractor. Express

this infonnation in the matrix form in two ways.

3. In family P, there are 4 men, 6 women and 3 children; and in family Q,
there are 4 men, 3 women and 5 children. Express this infonnation in the

form of a matrix of order 2x3.

Matrices
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4. How many elements in all are there in a

(a) 2 x 3 matrix (b) 3 x4 matrix (c) 4 x
2 matrix
(d) 6 x 2 matrix (e) a xb matrix (f) m x
n matrix

5. What are the possible orders of a matrix if it has
(a) 8 elelnents (b) 5 elements (c) 12 elements (d) 16 elements

6. In the matrix A,

51 8 0 5
7 6 7 4 6
A =
39 3 -39
4 4 8 5 1
find:

(a) a) number of rows;

(b) number of columns;

(c) the order of the matrix A;

(d) the total number of elements in the matrixA;
(© iy Gyys Ay dys and a3

7. Construct a 3 x 3 matrix whose elements in the ith row and;th column

is given by
.2 . 2
o ! (i+2)) C
(@i— (b) — () —5— (d) 3/ — 2
J 2
8. Construct a 3 x2 matrix whose elements in the ith row and j#4 column
is given by
(ayi+ 3 (b) 5ij (c) i/ di+j-2

Matrices
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Row Matrix

Column Matrix :

Square Matrix:

w3 TYPES OF MATRICES

: A matrix is said to be a row matrix if it has only one row,

but may have any number of columns, e.g. the matrix
[16012]is arow matrix.

The order of a row matrix is 1 x n.

A matrix is said to be a column matrix if it has only one column,
2
3

but may have any number of rows, e.g. the matrix |0 |isa
7

column matrix.

A matrix is said to be a square matrix if number of rows

3
is equal to the number of columns, e.g. the matrix 1
2

w o =
B~ O

having 3 rows and 3 columns is a square matnx.

The diagonal of a square matrix from the top extreme left
element to the bottom extreme right element is said to be the

principal diagonal. The principal diagonal of the matrix

W N

35
1 7| contains elements 2, 1 and 9.
8 9

Note : In any given matrix A = [a,] of order m x n the elements of the

principal diagonal are a, , a

299 Aazs w0 Ao

Rectangular Matrix : A matrix is said to be a rectangular matrix if the

Matrices

number of rows is not equal to the number of col-

umns, e.g. the

MATHEMATICS

MODULE - |
Algebra

Notes @]



MATHEMATICS | 311 Mathematics Vol-(TSOSS) |

MODULE - |
Algebra

mNotes

matrix having 3 rows and 4.

NN W
LY B N
w O W

columns is a rectangular matrix. It may be noted
that a row matrix of order 1 x n (n # 1) and a
column matrix of order m x 1 (m % 1) are rect-

angular matrix.

Zero or Null : A matrix each of whose element is zero is called azero

or null matrix, e.g. each of the matrix.

0 0 00 0
0 0 0 00 0 0 00 0
[00]’00’000’0O 00 0

is a zero matrix. Zero matrix is denoted by o.
Note : A zero matrix may be of any order m x n.

Diagonal Matrix : A square matrix is said to be a diagonal matrix, if
all elements other than those occuring in the principal
diagonal are zero, i.e., if A= [a,] is a square
matrix of order
m x n. then it is said to be a diagonal matrix if

aijZOforall i#].

For example,

7 0 0 0
300

0 3 00
0 4 0, , ,

0 0 1 0] arediagonal matrices.
0 0 5

0 0 0 8

Note : A diagonal matrix A = [a_] is also written as A =[a,, a,.,
] ijimx n 11 12
a .. ,a .

Matrices
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Scalar Matrix : A diagonal matrix is said to be a scalar matrix if all
the elements in its principal diagonal are equal to some

non-zero constant, say k e.g., the matrix

-3 0 O

0 -3 . .
is a scalar matrix.

0 0 3

Note: A square zero matrix is not a scalar matrix.

Unit or Identity Matrix :A scalar matrix is said to be a unit or identity

matrix, if all of its elements in the principal
diagonal are unity. It is denoted by [ ,ifitis

1
of order n e.g., the matrix 0
0

S = O
- O O

unit matrix of order 3.

Note: A square matrix A = [aij] is a unit matrix if

0, when i#
P, when i=j

Equal Matrices : Two matrices are said to be equal if they are of the same

order and if their corresponding elements are equal.

It A:{an app 013} and B:[bn by, b13} then
ay dy dp by by Dby

A=B if a;=b, fori=12 .. j=123.

Two matrices X and Y given below are not equal, since they are of different

orders, namely 2 x 3 and 3 x 2 respectively.

[T 13 72
T2 s Y=
5

(O8]

Matrices
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Also, the two matrices P and Q are not equal, since some elements of

P are not equal to the corresponding elements of Q.

P_—137 [-1 3 6
_012’Q_021

Example 4.5 : Find whether the following matrices are equal or not:

2] g[S
® _{56}’ 16

0 1 7
(“)P017Q235
1) r = , U=

2 35
0 00
2 13 2
(i) X=-1 0 6|, Y=[-1 0
7 10 7 1

Solution : (i) Matrices A and Bare of the same order 2 x 2. But some of their

corresponding elements are different. Hence, A # B. .
(i) Matrices P and Q are of different orders, So, P #Q.

(i) Matrices X and Yare of the same order 3 x 3, and their corresponding

elements are also equal.
So, X=Y.

Example 4.6: Determine the values of x and y, if

M [x s]=[2 5] (i) [ZCHﬂ

o A

Solution: Since the two matrices are equal, their corresponding elements should

be equal.

Matrices
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M x=2
@ x=4,y=3
@) x=1,y=-5

Example 4.7: For what values of g, b, c and d, are the following matrices

equal?
LA a 2b B — a 4
O 273 a7 Tlse 2
a b-2d 5
@ P=| -3 2b |,Q=|-3 6
a+c 7 4 7

Solution: (i)The given matrices 4 and B will be equal only if their correspond-

ing elements are equal, i.e. if

a=1,2b=4,3=>5c, andd =2

3
:>a=1,b=2,c=§ and d=2

3

Thus, fora=1,b=2,c= 5 and d = 2 matrices 4 and B are

equal.

(i) The given matrices P and Q will be equal if their corresponding elements
are equal, i.e. if
a=5, b-2d =1,2b=6 anda + c=4
=a=5b=3,¢c=-1 and d=1
Thus, for a=35,b=3,c=-1 and d = Imatrices P and Q are equal.

EXERCISE 4.2

1. Which of the following matrices are
(a) row matrices (b) column matrices (c) square matrices
(d) diagonal matrices  (e) scalar matrices  (f) identity matrices and

(g) zero matrices
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- 2
0
7 0 0 0 2 0
A: SO,B: ’C: ’D: R
8 0 0 0 0 2
6
- 0
1 2 4] 1 0
E={3 9 8,F=|0 1 0
1 | 00
2 -1
2 3 7
G=[3 4 10 8],H= =13 2
1 4 9 Lo

2. Find the values of g, b, ¢ and d if

b 2¢ | _[10 12 a+2 4] [4 2
@ \prd c-2a] |8 2 ® 1513 25]7 |6 5d
[2a b 13 2
© 14 6)7|d 2

3. Can a matrix of order 1 x2 be equal to a matrix of order 2 x 1 ?

4. Can a matrix of order 2 x3 be equal to a matrix of order 3 x3 ?

Let us consider the following situation:

The marks obtained by three students in English, Hindi, and Mathemat-
ics are as follows:

English Hindi Mathematics
Elizabeth 20 10 15
Usha 22 25 27
Shabnam 17 25 21

It is also given that these marks are out of 30 in each case. In matrix
form, the above information can be written as

Matrices
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20 10 15

22 25 27
17 25 21| names and columns correspond to the subjects)

(It is understood that rows correspond to the

If the maximum marks are doubled in each case, then the marks ob-

tained by these girls will also be doubled. In matrix form, the new marks can

be given as:
2x20 2x10 2x15 40 20 30
2x22 2x25 2x27 D 44 50 54
which is equal to
2x17 2x25 2x21 34 50 42

So, we write that

20 10 15 2x20 2x10 2x15 40 20 30
2x|22 25 27|=|2x22 2x25 2x27|=|44 50 54
17 25 21 2x17 2x25 2x21 34 50 42

Now consider another matrix

3 2
A=|-2 0
1 6

Let us see what happens, when we multiply the matrixA by 5

3 2 5x3  5x2 15 10
e, 5xA=5A=5x|-2 0|=|5x(-2) 5x0|=[-10 0
1 6 5x1  5x6 5 30

When a matrix is multiplied by a scalar, then each of its element

is multiplied by the same scalar.

For example,

. 2 -1 kx2 kx(=1)] [2k —k
if A= then, kA= =
6 3 kx6  kx3 6k 3k

-2 1
when k= -1, kA= (-1) A=

-6 -3
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So, (-1) A = -A

. 2 -1 -2 1
Thus, if A= 6 3| then —A = 6 3"

-2 3 4
Example 4.8:If A=| _, |, find

1
1) 24 (i) 5 A (iif) A (iv) =A
Solution:
(i) Here.
=2 3 4] [2x(-2) 2x3 2x4] [-4 6 8
2A =2x — _
-1 0 1] [2x(=1) 2x0 2x1| [-2 0 2
1 1 1 3
(i) lA IX{—2 3 4} EX(_z) 5><3 Ex4 -1 3 2
n) — = — — _
20 2 [t oty Lo Lal [ o L
2 2 ) 5 5
i —A = (<]) -2 3 4 2 -3 -4
- =(—1)X =
o 10 1] [1 0 -1
8
2 2
2 1-2 3 4
(iv) =A== [ }: 3 3
370-1 01 2 2
_Z 0 =
3 3

7 2
1. If A= , find :
2 3

1 3
(@) 4A (b) -A @A @-5A

Matrices
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0 -1 2
2. If A= , find :
3 1 4

1 1
(a) S5A ® 34 (© A & -7A
-1 0
3.If A=| 4 2|, find (-7)A
0 -1
30 1
4. If X=|4 -2 0], find
-1 0 5
1 1
(a) 5X ® —4X  (© 3X (@ —3X

RN ADDITION OF MATRICES

Two students A and B compare their performances in two tests in Math-

ematics, Physics and English. The maximum marks in each test in each subject

are 50. The marks scored by them are as follows:

First Test Second Test

M P E M P E
A|50 38 33 Al45 32 30
B [47 40 36} B {42 30 39}

How can we find their total marks in each subject in the two tests taken

together?

Observe that the new matrix giving the combined information of two matrices

M P E M P E
A|50+45 38+32 33+30 A|95 70 63
B|47+42 40+30 36+39 B8 70 75

This new matrix is called the sum of the given matrices.
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If A and B are any two given matrices of the same order, then their
sum is defined to be a matrix C whose respective elements are the sum of
the corresponding elements of the matrices A and B and we write this as

C=A+B.
If A =[a],,andB=1[b] thenA+B=C=][c] .,
where ¢.=a. + b..
if ij if
Note: 1. The order of the matrix C will also be the same as that of 4 andB.

2. It is not possible to add two matrices of different orders.
1 3 5 2
Example 4.9: A= 4 2 and B= Lol then find A + B.

Solution: Since the given matrices 4 and B are of the same order, i.e. 2 x2,

we can add them. So,

1+5 342
A+B =
4+1 2+0
6 5]
5 2]
0 1 -1 304
Example 4.10: If A = and B= then find A + B.
2.3 0 121

Solution: Since the given matrices 4 andB are of the same order, i.e. 2x 2,

we can add them. So,

0+3 1+0 -1+4

2+1 3+2 0+1

313
135 1|

Matrices
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4.5.1 Properties of Addition of matrices

MODULE - |

LetA=[a], B=[b], C=[c,] be matrices of the same order. Then | Algebra

the addition of matrices satisfies the following propertices.
(i) Commutative property
A+B=B+A
Now A+B-= [aij] + [bij]
= oy + byl
= b+ ay]
= [b] + [ay]

=B + A.

For any two matrices A and B of the same order, A+ B=B + A

1.e., matrix addition is commutative.
(i) Associative property
A+ B+ 0 =(A+B)+C
Now (A +B) + C = ([a,]+ [b;]) + [c;]

=[a;+ byl + [l
= [(a;+ by + ¢
= lay+ by + ¢
=[ a;+ (bl.j + cl.j)]
= [al.j]+ [bl.j + Cij]
= Lay 1+ (1] + [c,)
=A+ B +C0)

For any three matrices A, B and C of the same order,

A+ (B +C)=(A+ B) + Ci.e., matrix addition is associative.

Matrices
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MODULE - 1] (ii) Additive identity
Algebra If A is an m x n matrix and O is the (mxn) null matrix, A+ O = O
ml\l ¢ + A =A. We call O the additive identity in the set of allm x n matrices.
otes
Addiitve identity is a zero matrix, which when added then a given matrix,
gives the same give matrix
ie, ATO=0+A=A.
_ -1 0
Example 4.11: If A = 20 ,B= 31 and C:[ },then
1 3 ) 0 3
find (a) A+B (b) B+C (¢) (A+B)+C (dA+B+C)
Solution:
2 0 N
@ A+B = 13 1 2
B [2+(=3) 0+1 IR
L1+ 3+2) |2 05
=3 1] [-1 0
(b) B+C = +
12 0 3
[+ 1+0] [4 1
| 10 2+43] |1 5
(© (A +B)+C {_2 5} { } . [From (a)]
_ [(-D)+(=1) 1+0 -2 1
| 240 543 2 8
(2 0
d A+ (B+C) = R e S [From (b)]
2+(—4) 0+1 -2 1
| 1+l 345 2 8

Matrices
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-2 5 0 00
Example 4.12: If A = . and O = 00 0 then find

-1 0

(@) A+O (b)O+A

What do you observe?

) 2 3 5 00 0
Solution:(a) A +0O = +
1 -1 0 00 0
[-2+0 3+0 s5+0] [2 3 5
1140 140 0+0| |1 -1 0

bO+A_‘ooo_—2 305
®) oo o [1 -10

[0+(=2) 043 0+5] [-2 3 5
L0+l 0+(=D) 0+0] [1 -1 0

From (a) and (b), we see that

X3 SUBTRACTION OF MATRICES

Let A and B two matrices of t he same order. Then the matrix
A — B is defined as the subtraction of B from A. A — B is obtained by
subtracting corresponding elements of B from the corresponding elements
of A.

We can write A - B =A + (-B)

Note: A — B and B — A do not denote the same matrix, except when
A =B.

1 0 3 2
Example 4.13: If A = [2 J and B= L 4} then find

(a)A-B (b)B-A
(a) We know that
A-B=A+(-B) ..(1)

Matrices
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M

-3

) 3 2
Since B = , we have —-B=
1 4 -1
Substituting it in (i), we get

a-n=l) °WT

[+ 042 ] -2
24(-1) (=D+(=4)| |1

-2
- -5
(b) Similarly,
B-A=B+(-A)

(3 2 -1
B—A:3 + 0
1 4] |21

C[3+¢=n 2+0] [2 2
|1+ (=2) 4+1] |-1 5

Remark: To obtain A — B, we can subtract directly the elements of B from

the corresponding elements of A. Thus,

1-3 0-2 -2 =2
A—B: =
2-1 —-1-4 1 -5
3-1 2-0 2 2
and B-A= =
1-2 4—(=1)| |-1 5

Example 4.14: Find (a) A— B (b) B — A, for the matrices 4 andB defined
as under:

2 4 3

A=|5 7|, B= -2

-1 4 1
2 4 0 3
Solution: (a)A-B= |5 7|-|5 2
-1 4 3 1

Matrices
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1_0  4-3 ] MODULE - |

—[5-5 7-(=2)|=| 0 9 Algebra
~1-3  4-1 4 3 @]

Notes
0 3 2
b)B-A=[5 —2|= 7

3 1] |-1 4

[ 0-2 3-4 -2 -1

=| 5-5 —2-7|=|0 -9

3-(-1) 1-4 4 -3

Remarks: From above examples we can conclude that the matrix subtraction

1S not commutative.
2 3 a b

Example 4.15: If A = | 4 ; B= J and A+B = O, find B.
— C

Solution: Here, it is given that A+ B =0
2 3 N bl 10 0
-1 4] |c d] |0 0

24+a 3+b B 00
“1+c 4+d| |0 0

= 2+a=0 ; 3+b=0
-1+c=0 ; 4+d=0
= a=-2; =-3; ¢c=1 and d= —4

R

Remarks: In Example 4.15 the elements of B are the additive inverse of the
corresponding elements of A. We, therefore, call B is the additive inverse of

the matrixA. Further,
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B=| > -1 2 3 xA=-A
R A ] e

In general, given a matrix 4, there exists another matrix B = (1) A such that

A + B =0, then such a matrix B is called the additive inverse of the matrix
of A.

" EXERCISE 4.4

3 -1 0 -1
1. If A= and B = then find :
5 2 3 2

(a)A+B (b)2A +B (c)A+3B (d)2A +3B
2 1t P=| > > 2| and b2 53 hen find
. Sl o4 ol Q—41_5,ten ind :
(@P-Q (b) Q-P (c) P-2Q (d) 2Q-3P
1 -2 3 -1 4 0
3. IfA=|4 -1 2|land B=|1 6 1],then find:
4 5 0 2 0 7
(a) A+ B (b) A-B (c) —A+B (d) 3A+2B
[0 1
4. If A=| 0 -1}, find the zero matrix 0 satisfying A+ 0 =A.
-1 1
2 -1 0
5. If A=|1 2 3| thenfind:
-4 0 1
(a) -A (b) A+(=A) () (-A)+A

1 9 5 1
6. If A= and B = then find :
3 2 7 9

(a) 2A (b) 3B (c) 2A + 3B
(d) 2A + 3B+ 5X =0, what is X?

Matrices
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1 4 1 2 2 -1
7. If A= , B= andC= , then find :
-2 1 3 -1 3 2

(a) A -B (b) B-C () A—-C (d) 3B -2C
() A-B-C (f)2A - B - 3C

XN MULTIPLICATION OF MATRICES

Salina and Rakhi are two friends. Salina wants to buy 17 kg wheat, 3

kg pulses and 250gm ghee; while Rakhi wants to buy 15 kg wheat, 2kg
pulses and 500 gm ghee. The prices of wheat, pulses and ghee per kg respectively
are Rs. 8.00, Rs. 27.00 and Rs. 90.00.How much money will each spend?
Clearly, the money needed by Salina and Rakhi will be :
Salina
Cost of 17 kg wheat =17 x Rs.8 = Rs. 136.00
Cost of 3 kg pulses = 3 x Rs. 27 = Rs.81.00
Cost of 250 gm ghee — % x Rs. 90 = Rs. 22.50
Total = Rs. 239.50
Cost of 15 kg wheat =15 x Rs.8 = Rs. 120.00
Cost of 2 kg pulses = 2 x Rs. 27 = Rs.54.00
Cost of 500 gm ghee = % x Rs. 90 = Rs. 45.00
Total = Rs. 219.00
In matrix form, the above information can be represented as follows:
Requirements  Price Money Needed
wheat pulses ghee 8

17 3 0.250| |27

15 2 0.500| (90

17x8+3x27+0.250x907 [239.50
15x8+2x27+0.500x90 | |219.00

Another shop in the same locality quotes the following prices.
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Wheat: Rs. 9 per kg.; pulses: Rs.26 per kg; ghee : Rs. 100 per kg.
The money needed by Salina and Rakhi to buy the required quantity of
articles from this shop will be
Salina
17 kg wheat =17 x Rs.9 = Rs. 153.00
3 kg pulses = 3 x Rs. 26 = Rs.78.00
1
250 gm ghee = ks Rs. 100 = Rs. 25.00
Total = Rs. 256.00
Rakhi
15 kg wheat =15 x Rs.9 = Rs. 135.00
2 kg pulses = 2 x Rs. 26 = Rs.52.00
1
500 gm ghee = 5 X Rs. 100 = Rs. 50.00
Total = Rs. 237.00
In matrix form, the above information can be written as follows:

Requirements  Price Money Needed

9.00
{17 3 0-250} 26.00 | = [17x9+3x26+0.250x100}_{256.00}

15 2 0.500 100.00 15%9+2x26+0.500x100 237.00

To have a comparative study, the two information can be combined in
the following way:

8.00 9.00

17 3 0.250 239.50 256.00
27.00 26.00 | =

15 2 0.500 219.00 237.00
90.00 100.00

Let us see how and when we write this product:

(1) The three elements of first row of the first matrix are multiplied respec-
tively by the corresponding elements of the first column of the second

matrix and added to give element of the first row and the first column

Matrices
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of the product matrix. In the same way, the product of the elements of
the second row of the first matrix to the corresponding elements of the
first column of the second matrix on being added gives the element of

the second row and the first column of the product matrix; and so on.

(i) The number of column of the first matrix is equal to the number of rows
of the second matrix so that the first matrix is compatible for multiplica-

tion with the second matrix.

a By
|4 b ¢ _
Thus, If A = and B=|a, B, |, then
a, D, G a B
3 P3
a
a b ¢ : gl
X |o
AB = a, b, ¢ e
oy B

_ { a0y +bo, +oy  ap+bB, +cps }
a0 +by0, + 005 afy + by, + ¢y

Definition: If A and B are two matrices of order m x p and p x n respec-
tively, then their product will be a matrix C of order m x n; and if a; bij and
¢, are the elements of the i row and ;™ column of the matrices A, B and

C respectively, then

P
¢y = 2 ai by
k=1

-2
Example 4.16: If A=[1 -1 2]and B=| 0 |, then find:
2
(a) AB (b) BA Is AB=BA?

Solution: Order of Ais 1 x3

Order of Bis 3x1
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Now, AB=[1 -1 2]| 0
2
=[1x (2)+ (=) x 0{2x2]=[2+0+4]= [2]

Thus, AB = [2], a matrix of order 1 x 1.

Again, number of columns of B = number of rows of A.

. BA exists.
Now,
-2
BA=| 0 [1 -1 2]
2
=2x1 (-2)x(-1) (-2)x2 -2 2 -4
=| 0xl1 0x(-1) 0x2 (=0 0 O
2x1 2x(-1) 2x2 2 -2 4
-2 2 -4
Thus, BA=| 0 0 0 |amatrix of order 3x3.
2 -2 4

From the above, we find that AB =« BA.

1 2 3
Example 4.17: If A = {3 J and B = L} , then find AB.

Solution: Here, number of columns of A = number of rows of B

. AB exists.

1 2 3
Now AB =
3 -1 2x2 1 2x1

| IxI+2x1 BE
C[3x3+(=Dx1],, |8

[
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Remarks: Can we find BA? The answer is no, because the number of col-

umns of B is not equal to the number of rows of A.
Thus, in Example 4.17, we find thatAB exists, but BA does not exist.
Example 4.18: FindAB and BA, if possible for the matrices A and B:
-1

2 0
A= :B=|2
0 1
3

Solution: Here, Number of columns of A # Number of rows of B
. AB does not exist.
Further, Number of columns of B = Number of rows of A

.. BA does not exist.

1 2 2 1
Example 4.19: If A = { 0} and B = {2 2} , then fmd AB and BA. Also

fmd if AB=BA.
Solution: Here, Number of columns of A = Number of rows of B
. AB exists.
Further, Number of columns ofB = Number of rows of A

.. BA also exists.

1 202 1
-1 0][2 2
_'1><2+2><2 Ix1+2x2
[ -1x240x2  —Ix1+0x2

_{2+4 1+4__{6 5}
-2+0 -1+0] [-2 -1},
2 1][1 2]
and BA =
2 2|[-1 0]
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Thus AB

AB # BA.

AB = BA?

arise:

(1i)
(iii)
(iv)
v)

exist. Now
(2 0
AB =
10 3
4 0
BA =
0

%

2 0
Example 4.20 : If A = [0 3} and B

L
i

Here, both AB and BA are of the same order and AB = BA.

[2x1+1x(=1) 2x2+1x0
| 2x1+2x(=1) 2x2+2x0
[2-1

4+0
12-2 4+0

BA.

0 4 2x2

Remarks: We observe that AB and BA are of the same order 2 x 2, but still

4 0
[O J, find AB and BA. Is

Solution : Here, both A and B are of order 2 x 2. So, both AB and BA

o )
2 U 2x2

8+0 0+0
0+0 0-3

:

{ :|
2x2
0

-3 sz

8+0 0+0
0+0 0-3

53

Hence, if two matrciesA andB are multiplied, then the following five cases

BothAB andBA exist, but are of different orders.
Only one of the productsAB or BA exists.
Neither AB nor BA exist.

Both AB and BA existand are of the sam e order, but AB #* BA

Both AB and BA exist and are of the same order. Also, AB= BA.

Matrices
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30
Example 4.21 : If A= [0 3} and I

Solution: Here,

, 3 0][3 0] [9+0 0+0] [9 0
A*=AA= = =
0 3]l0 3] |[0+0 0+9| [0 9
3 0] [6 0
2A =2 =
PRI
and 3I=3IO=3O
0 1] [0 3
, 9 0] [6 0] [3 0
o AT -2A-31= - -
0 9] |0 6] |03
9 0] 6 0] [30
1o 9] o 6] |03
[9 0] [9 0
10 9] |09
[9-9 0-07 [0 0 o
~10-0 9-9| [0 0]

Hence, verified.

Example 4.22 : Solve the matrix equation:

2
1

-3
1

1
3

X

y

bl

Solution: Here,

s

L.H.S.
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2x-3y 1
= =
x+y 3
= 2x-3y=1;, x+y=3
Solving these equations, we get
x=2and y=1.

11 1
Example 4.23 : If A = L J and B = { . J then find AB.

Solution : Here,
AB—I Lif-1 1| 1Ix(=D+Ix1 Ix1+Ix(-1)
11| 1 =1 [ Ix(=D+1x1 Ix1+1x(=1)

|-+l 1=1p 10 0 0
S -1+l 1-1) [0 0]
Remarks: From Example 4.23, we find that the product of two non-zeromatrices

may be a zero matrix, i.e. A 20 and B 0 may imply AB = 0.

Hence, we conclude that the product of two non-zero matrices can be
a zero matrix, whereas in numbers, the product of two non-zero numbers is

always non-zero.

I 1
Example 4.24 : If A= { } find A% .

Solution: 2| ! L|[' |_[1-t 1l
-1 =1][-1 —1] [-1+1 -1+l

[ J

Remarks: From Example 4.24, we find that the square of a non-zero matrix

may be a zero matrix, i.e., A 0 may imply A?=0.

Matrices
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1 -2
Example 4.25: For A = [3 s }, B
(a) (AB)C

4

3l

Solution: (a) (AB)C = {B

(b) A(BC)

4 0 -1 0
and C = , find
-1 2 0 3

Is (AB)C = A(BC)?

W ]

[4+2 0-47-1 0
“|12-5 o+10][0 3
6 —4][-1 0

|7 10]l0 3

[-6+0 0-12] [-6 -12
|-7+0 0+30] |-7 30

4

A

(b) A(BC) = E

I

1 2] {—4+0 0+0}

3 5] 140 0+6
[ =274 o

13 51 6

[-4-2 o0-12] [-6 -12
| -12+5 0+30| [-7 30

From (a) and (b), we find that (AB)C = A(BC), i.e., matrix multiplica-

tion is associative.

e EXERCISE 4.5 T

0

l. f A=[2 3 0] and B=|-2|, find AB and BA. Is AB = BA?

1
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e

*

10.

I1.

2 3

[0 2 -2
If A= 3 0]andB: 1 —1|find AB and BA. Is AB=BA?
- 0 -2
If A= ;j and Bz[x y z] find AB and BA, whichever exists.
—1 2 0 )
If A= 0 and B= | -3 find BA. Does AB exists?
2 3 0
If A :{ } and B=| -1
0 1
2
(a) Does AB exist? Why? (b) Does BA exist? Why?
2 1 -1 0
If A= and B = find AB and BA. Is AB=BA?
0 3 2 5
1 20 2 -3 1
If A={-3 5 4 and B=|1 0 3| find AB and BA. Is
5 31 1 2 3
AB = BA?
2 0 50
IfAz0 1and B= 0 1 find AB and BA. Is AB = BA?
Find the values of x and y if
1 1]|x B 2 2 3 0|x B 4
@ 14 5|y Tl7] ®@ 10 —]|y] |3
A—zodB—O0 ify that AB=10
11 Oan e verity that =0.
2 5 . ) . .
For A = [1 3}, verify that A? — 5A + 1= 0,where [ is aunit matrix

of order 2.

Matrices
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1 3 2 2 4 3
12. If A = , B= and C = , find
2 1 -1 1 -2 3

(a) A(BC) (b) (AB)C (c) (A +B)C
(d) AC + BC (e) A2 — B2 (f) (A - B) (A + B)

2 -1 3 =2 1 2
13. If A= , B= and C= , find : (a) AC
3 1 2 2 1 2

(b) BC

Is AC = BC ? What do you conclude?

-1 0 1 -1 3 8
14. If A= , B= and C = find
1 =2 2 0 7 -1

(a) B+ C (b) A(B+C) (c) AB
(d) AC (e) AB + AC

What do you observe?

0

2 -1 2 3
15. For matices A = L 4 } and B = {_1 }, verify that (AB)Y = B'A".

-1 2 3
16. If A = 5 J and B = L} , find X such that AX = B.

fa b 1 0] 5
17. If A = i and [ = , show that A< — (a + d)A = (bc — ad)l
c

0 1

[0 1 0 1] .
18. If A = and B = is it true that
2 1 1 1]

(@) (A + B)? = A2 + B> + 2AB ?
(b) (A — B2 = A2 + B2 — 2AB ?

(©) (A+B) (A-B)=A>-B?
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W@ TRANSPOSE OF A MATRIX

In this section we define the transpose of a matrix and study its prop-

erties. We also define symmetric and skew symmetic matrices.
Definition (Transpose of a matrix)

If A= [a,] is an m x n matrix then the matrix obtained by intechanging

the rows and columns of A is called the transpost of A. Transpose of the

matrix a is denoted by A' or A™. In other words if , then A = [aij] o then

mx
A= [a-.]
l‘/ nxm

For example it

3 2

3 40
A=|4 1|, then A'=
21 7
0 7

4.7.1 Properties of transpose of matrices

We now state the following properties of transpose of matrices without

proof. These may be verified by taking suitable examples.

For any two matrices A, B of suitables orders we have
@) (A’)' =A (ii) (kA)' = kA’ (kisaconstant)

(i) (A+B) =A'+ B’ (iv) (AB) = B'A’

1 4 7 -3 4 0
Example 4.26 : If A= and B=
2 5 8 4 -2 -1

Verify that (i) (A=A (ii) (A+B)=A"+B
(i) (5B)' =5(B)’
Solution:

. 1 4 7
(1) We have A = 2 5 8

Matrices
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1 2 MODULE - I
— A'=|4 5 Algebra
g #9
Notes
1 4 7]
= (A) = =A
2 5 8
. 1 4 7 =3 4 0
1) A+B =
2 58 4 2 -1
_'—2 8 7
16 37
-2 6
L (A+B)Y=|8 3
7 7
1 2 -3 4
A'+B'=[4 5|+ |4 2
7 8 0 -1
S
=| 8 3|=(A+B)

-3 4 0
(i) We have 5B =5

[—15 20 0
|20 -10 -5

~15 20
(5B) =| 20 -10
0 -5
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-3 4
=514 =2
0 -1
= 5B".
1 =2
2 -1 2 30
Example 4.27: If A= and B = then verity that
(AB)' = B'A'
1 2
Solution : We have AB =
1 3 -4 5 4

_'2+3+10 —4+0+8}

1-9-20 —2+0-16
15 4
S| -28 18
. (ABY - 15 28
B 14 -18
> 1 35
Now A'=|-1 3 and B’=[2 _O 4}
2 4 B
2
1 35
B'A'= -1
2 0 4
2 -4
[2+3+10 1-9-20
| -4+0+8 —2+0-16
15 28
4 18

Hence (AB) = B'A’.
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4.7.2 Symmetric Matrix

A square matrix A is said to be symmetric if A'=A

For example,

1 2 0 1 2 0
If A=2 -3 -1 then A'=(2 -3 -1
0 -1 4 0 -1 4

Since A' =A, A is symmetric matrix.

Note : 1. 1 a sym m etric m atrix A = [aij] nxn aij = aji for all i andj.

2. The zero matrix O, , , any diagonal matrix and the unit matrix

I ., are symmetric.
3. If Ais asquare matrix, then A+ A' is a symmetric matrix.

4. A rectangular matrix can ever be symmetric.

4.7.3 Skew - Symmetric Matrix.

A square matrix A is said to be skew symmetric matrix, if A' = A.

For example

0o 1 =2 0 -1 2
If A=|-1 0 4|, then A'=|1 0 -4
2 4 0 -2 4 0
0o -1 2
But —~A=|1 0 -4| ,whichissame as A’
-2 4 0
A'=-A

Hence, A is a skew symmetric matrix.
Note : 1. The zero matrix 0, ., is skew - symmetric.

2. If Ais asquare matrix, then A—A'is a skew - symmetric matrix.
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3. In askew - symmetric matrix A = [aij] =0, fori=j i.e.,

nXxn’ aij

all elements in the pricipla diagonal of a skew symmetric matrix are

ZeToEs.
-1 2 3

Example4.28: If A=|2 5 6| isasymmetric matrix, then find x.
3 x 7

Solution: Since A is a symmetric matrix A' = A.

-1 2 3 -1 2 3
= |2 5 x|=]2 56
3 67 3 x 7
= x=6
0 4 =2
Example 4.29: If A=|-4 0 8 | isaskew symmetric matrix, find

2 -8 x
the value of x.

Solution : A is a skew symmetric matrix andx is an element of the diagonal.
Hence x = 0.

Example 4.30 : For any nxn matrix A, prove that a can be uniquely expressed

as a sum of a symmetric matrix and a skew symmetric matrix.

Solution : A+ A' is symmetric and A — A' is skew symmetric matrix and
1 N L :
A = 5(A+A) + E(A_A)

To prove uniqueness, let B be a symmetric matrix and C be a skew
symmetric matrix such that A=B + C
Then A' = B+C) =B'+C'=B-C

and A+A' =B+C+B-C

Matrices
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= B= %(A+A')

1
and C= E(A—A').

e EXERCISE 4.7

21 -2 31
1. If A=|5 0| and B=[4 0 2} then find 2A + B' and
-1 4
3B'— A.
0 2 1
2. f A=|-2 0 =2| isaskew symmetric matrix, then find x.
-1 x O
(2 —4
3. If A=|_5 5 | thenfind A+ A"and AA".
15 3 2 -1 0
4. If A=|2 4 0 |and B=|0 -2 5| then find 3A — 4B".
3 -1 =5 1 2 0
2 0 -1 -1 0 1
5. If A= and B = , then find :
4 3 2 2 40
(a) A’ (b) B’ (c)A+B (d) (A +B)’
(e) A'+ B’
6. Find A' (transpose of A) :
@ a=|> " o Aa- 0
a = =
4 3 6 8 7
1 -2 1 0 0
© A=|4 -1 d A=[0 1
-6 9 0 0 1
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Algebra 8. Show that each of the following matrices is a symmetric matrix :
mN t 1o 2
otes 5 4

(a) A by |-1 2 -3
-4 3 2 -3 4

a b c¢ 1 00

b d 010

(©) © (d)
c e f 0 0O

9. Show that each of the following matrices is a skew symmetric matrix :

0 i 4
0 -3
(a) [3 0 } (b) i 0 2—i
-4 2+i 0
-2 0 0o -1 7
2 0 4 1 0 5
(©) (d)
0 4 0 -7 =5 0

LR B SOLUTIONS OF NON HOMOGENEOUS SYSTEM
OF EQUATIONS

We consider solving the following system of 3 equations in unknowns
ax+by+cz=d,
ayx + by +cz=d,

ax + b3y +tez = a’3

This system can be represented by a matrix equation AX =D where
a b ¢

A= a, by, ¢, is the coefficient matrix,
a by o

I
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X

X = | »| is the variable matrix,

D = | d, | is the constant matrix,

a b oo 4
[AD]=|a, b, ¢, d, |istheaugmented matrix
ay by ¢ ds

4.8.1 Gauss - Jordan method

a b ¢ d
In this method we try to transform the augmented matrix | a, b, ¢, d,
ay by ¢ ds

1 0 0 «
to the form 0108
0 0 1 vy

by using elementary row transformations, so that the solution is com-

pletely visible thatis x=o,y=0z=vy.
Note :

For solving a system of three linear equations in three unknowns by Gauss-
Jordan method, elementary row operations are performed on the augmented

matric as indicated below.
Step 1

(1) Transform the element in (1, 1) position to 1, by a suitable elementary

row transformation using the element at (2, 1) or (3, 1) prosition or other wise.

(i1) Transform the non-zero elements, If any at (2, 1) or (3, 1) positions
as zeros (other elements of the first column) by using the element 1 at (1, 1)

position.
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If, at the end of step 1, there is a non-zero element at (2, 2) or (3, 2)

position, go to step 2 otherwise skip it.
Step 2

(1) Transform the element in (2, 2) position to 1, by a suitable elemen-

tary row transformation using the element at (3, 2) position or otherwise.

(i1) Transform the non-zero elements, It any, of the second column (i.e.
the non-zero elements, if any, at (1, 2) or (3, 2) positions) as zeros, by using
the element 1 at (2, 2) positon. At the end of step 2, or after skipping it for
reasons specified above, examine the element at (3, 3) position, If it is non

zero, go to step 3. Otherwise, stop.
Step 3

(i) Transform the element in (3, 3) postion to 1, by dividing R ; with a

suitable number.

(i1) Transform the other non-zero elements if any of the third column (that
is, the non-zero elements, if any, at (1, 3) or (2, 3) positions) as zeros, by

using the 1 present at (3, 3) position.

Example 4.31 : Solve the following equations by Gauss-Jordan method
3x +4y + 5z =18
2x —y + 8z =13

Sx =2y +7z=120

3 4 5 18
Sol: The augmented matrix is |2 -1 8 13
5 =27 20
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on applying R, >R, —-R, we get MODULE - |
s 3 s Algebra
SR Notes ﬁn
5 =2 7 20

on applying R, -»R, - 2R,, R; R; - 5R,,

1 5 3 5
~|0 =11 14 3
0 27 22 -5

On applying R, — - 5R, + 2R, , we get

1 5 3 5
~10 1 =26 -25
0 =27 22 -5

On applying R, -»R, - 5R,, R; - R; +27R,

1 0 127 130
~10 1 -126 =25
0 0 -680 -680

On applying R; »R, + (- 680), we get

1 0 127 130
~10 1 -126 -25
0 0 1 1

On applying R, -»R, - 127R;, R, — R, + 26R;, we get

l
S O =
S = O
- o O
— = W

Hence the solutionis x=3, y=1, z=1.
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Example 4.32 : By using Gauss - Jordan method, show that the following

system has no solution

2x + 4y —z =0, x+y+2z=35, 3x+6y—-Tz=2
2 4 -1 i
Sol: A= |1 2 2|, X=|y|, D=5
3 6 -7 z

The Augmented matrix is

2 4 -1
[AD]= |1 2 2
3 6 -7

On interchanging R, and R,, we get

On applying R, -»R, - 2R,, R; - R, - 3R, we get

1 2 2 5
~10 0 =5 -10
0 0 -13 -13

On applying R, -R, + (=5), R; - R; =+ (-13) we get

5
2
-1

l
o o =
o o N
—_ =N

On applying R, >R, - R, we get

1
~ 10
0

S O N

2 5
I 2
0 -1

Matrices



| 311 Mathematics Vol-|(TSOSS) ' MATHEMATICS

Hence the given system of equations is equivalent to the following system

of equations
X+y+2z=15, z=2, 0(x)+0(y) +0(z) = -1
Clearly no x, y, z satisfy the last equation in the above system.

Hence the given system has no solution.

e EXERCISE 4.7 T

Solve the following systems of equations by using Gauss-Jordan method.

. x+y+z=1
2x + 2y + 3z2=06
x+4 +9z=3

2. x—y+3z=5
4x+2y-z=0

-x+3y+z=35

3. 2x—y+3z=9
xty+z=6

x—-y+tz=2

4. 2x —y + 8 =13
3x +4y + 5z =18
S5x =2y + 7z=20

4.8.2 Definition (Consistent and inconsistent systems)
We say that a system of linear equations is
(1) consistent if it has a solution

(i) inconsistent if it has no solution
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4.8.3 Solution of non-homogeneous system of equations
We consider soluving the following system of 3 equations in 3 unkowns
ax +by+cz=d,
ayx + by +cz=d,
ax + by + ¢z = d,
This system can be represented by a matrix equation

AX =D, where

aq b ¢

[AD]= |a, b, ¢, is the coefficient matrix,
a; by o 23

X=ly 1s the variable matrix,

d,
D=\|d, is the constant matrix,
|43 3x1
a b ¢ d

[AD]= |ay b, ¢ d,

az by ¢ dy x4

is the augmented matrix.

Theorem 1
The system of three equations in three unknowns AX = D has
(1) a uniqu solutin if rank (A) = rank([AD]) =3
(i) infinitely many solutions if rank (A) = rank ([AD]) <3
(i) no solution if rank (A) # rank ([AD])

Note that the system is consistent if and only if « rank (A)=rank
([AD)).
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Example 4.33 : Show that the system of equations given below is not consistant | MODULE - |

2x + 6y = - 11 Algebra
6x + 20y — 6z = -3 Notes @]
6y — 18z = —1

Solution : The given system of equations can be written in the form AX = Dm

where
2 6 10 X -11
A=16 20 6|, X=|y|, D=3
0 6 -18 z -1

Consider the augmented matrix

2 6 0 -1
[AD]= |6 20 -6 -3
0 6 -18 -1

on applying R, - R, —3R,, we get

2.6 0 -1l
[AD] = |0 2 -6 30
06 -18 -1

on applying R, — R, — 3R, we get

2 6 0 -11
AD~ |0 2 -6 30
0 0 0 -91

is non-singular its determinant is —91(6) (—6) # 0

But the rank of the coefficient matrix is not 3 because

6 0 —11
2 -6 30
0 0 -91|
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2 6 0
det|0 2 -6|=0
0 0 O

. rank of (A) # rank ([AD])
Hence the given system is inconsistent.
Example 4.34: Why do we use only elementary row transformations?

Let us apply elementary column transformations to the augmented matrix
of example 3.
2 6 0 -11
Sol: [AD]~ |6 20 -6 -3
0 6 -18 -1
on applying C, —» C, - 3C,, we get

20 0 -l11
[AD] ~ |6 2 -6 -3
0 6 —18 -1

on applying C, —» C, - 3C,, C;and C; + 3C, we get

2 0 0 -11
AD~| 0 2 0 -3
-18 6 0 -1

Now we can easily observe that the rank of the coefficient matrix

1s # 3, as
2 00
0 2 L
, 1s singular
-18 6 0

The rank of the augmented matrix is 3, since the sub matrix

2 0 -11
0 2 -3/ .
is non-singular
-18 6 -1

Matrices
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(determinant 2(-2 + 18) — 11(36) =32 — 11x 36 #0)
Hence rank (A) # rank ([AD]).
Hence the system is inconsistent.

Thus, we can use either row trnasformations of column transformations

to find whether a system is consistent or inconsistent.

Example 4.36 : Apply the test of rank to examine whether the following equations

are consistent
2x —y +3z=38
x+2y+z=4
3x+y—-4z=0

and if consistent, find the complete solution.

2 -1 3 8
Sol: The augmented matrix is [AD]=|-1 2 1 4
31 40
-1 2 1 4
2 3 (on interchanging R, and R, )
3 1 -4

we transform the above matrix into an upper triangular matrix.

-1 2 1 4
~10 3 5 16

0 7 1 (onapplying R, - R, +2R,, R; - R; +3R))

-1 2 1 4
~10 3 5 16

(on applying R; — 3R, —7R,)
0 0 -38 -76

-1 2 1
Now det| 0 3 5 |=(-D3)(-38)=114
0 0 -38
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Hence rank (A) = rank ([AD]) =3
—-x+2y tz=4

3y+5z=16

-38z = -76

The system has a unique solution.
~z=2,y=2, x=21is the solution..

Example 4.37: Show that the following system of equations is consistent and

solve it completely :
x+y +z=3
2x +2y—z=3
x+y—-z=1

Sol: The given equations are equivalent to the equation AX = D, where

1 X 3
A= 12 2 1|, X=|yl|,and D=|3
11 -1 z 1
11 1 3
Augmented matrix [AD]~ {2 2 -1 3
11 -11

On applying R, - R, - 2R, R; - R; - R, we get

11 1 3
~10 0 -3 3
0 0 =2 2

On applying R, — 3R; - 2R, we get

11 1 3
~/0 0 -3 3
00 0 O
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Clearly all the submatrices of order 3 of the above matrix are singular
Hence rank [A]x 3 and rank ([AD]) # 3.

1 1
Now the non singular matrix [ 0 _3} is a submatrix of both A and [AD]

Hence rank (A) = rank ([AD]) = 2

Hence by theorem 1, the system is consistent and has infinitely many
solutions.

we now write the equivalent set of equations.

x+y+tz=3
-3z=-3
Hencez=1,x + y = 2.

Hence x =4k, y=2 -k, z=1, k € R is the solution set.

EXERCISE 4.8

I. Examine whether the following systems of equations are consistent or

inconsistent and it fonsistent find the complete solutions.

. x+y+z=1
2x+y+z=2

x+2y+2z=1

2. x -3y —-8=-10
3x +y—-4z=0
2x + 5y + 6z =13

3. x+y+4z=6
3x+2y-2z=9
Sx+y+2z=13
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KEY WORDS

e A rectangular array of numbers, arranged in the form of rows and col-

umns is called amatrix. Each number is called anelement of the matrix.
e The order of a matrix having ‘m’ rows and ‘n’ columns is m x n.

e [f the number of rows is equal to the number of columns in a matrix, it

is called a square matrix.

e A diagonal matrix is a square matrix in which all the elements, except

those on the diagonal, are zeroes.

e A unit matrix of any order is a diagonal matrix of that order whose all

the diagonal elements are 1.
@ Zero matrix 1s a matrix whose all the elements are zeroes.

e Two matrices are said to be equal if they are of the same order and their

corresponding elements are equal.

e A transpose of a matrix is obtained by interchanging its rows and col-

umns.

e Matrix A is said to be symmetric if A= A and skew symmetric if A’
=-A

e Scalar multiple of a matrix is obtained by multiplying each elements of

the matrix by the scalar.

e The sum of two matrices (of the same order) is a matrix obtained by

adding corresponding elements of the given matrices

e Difference of two matrices A and B is nothing but the sum of matrix A

and the negative of matrix B.

e Product of two matrices A of order m x n and B of order n xp is a
matrix of order m x p, whose elements can be obtained by multiplying
the rows of A with the columns of B element wise and then taking their

sum.
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1. A system of linear equations is
(1) consistent if it has a solution

(i) inconsistent if it has no solution.
2. Non homogeneous system

ax +by+cz=d,

a,x + by + cz=d,
ax + by + ¢z = d,
The above system of equations has
(1) a unique solution if rank (A) = rank ([AD]) =3
(i) infinitely many solutions if rank (A) = rank ([AD]) <3
(ii)) no solution if rank (A) # rank ([AD]).

SUPPORTIVE WEB SITES

http : //www.wikipedia.org

http:// math world . wolfram.com

PRACTICE EXERCISE

1. How many elements are there in a matrix of order
(a) 2 x1 (b) 3x2 (c) 3x3 (d) 3x4
2. Construct a matrix of order 3 x 2 whose elements aij are given by
.3
(a) al.j=1—2] (b) aij:31_] (c)aij=l+51

3. What is the order of the matrix?

2
(a) A=|3 (b) B=[2 3 5]
-1
23 oo 1S
() Cc=|-1 0 (d) 17 6 1
0
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MODULE - | 4. Find the value of x,y and z if
Algebra x y| [1 2 Xty oz | 6 5
@ @ 1, 5173 2 ® 16 xy] |6 4
Notes
x-=2 3 | |1 =z x+y y-z| |3 4
©) 0 y+5 - y+z 2 (d) z=2x y-Xx 1 o—1
1 2 2 4
5. If A= and B = Jfind :
4 2 -1 4
(a) A+B (b)2A (c) 2A-B
6. Find X. if
4 5 X 10 -2
@135 6] 7|1 4
1 -3 2] [2 -1 1 00 0
(b) + +X =
2 0 2 1 0 -1 0 0O
7. Find the values of ¢ and b so that
3 -2 2 . a=b 2 2| |6 0 0
1 0 -1 4 a b| |5 2a+b 5
8. For matrices A, Band C
1 3 2 1 5 6
A=10 2 ,B= 1 4 and C=|7 1
5 7 3 7 4 1
verify that A+(B+C) =(A + B) + C
1 1 2 b3
9. IfAz{2 3 5} and B=|2 4| find AB and BA. Is AB= BA?
6 5
1 2 0 -2
10. If A= 0 0 and B = 0 1 find AB and BA. Is AB = BA?

Matrices
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I1.

12.

13.

14.

1 -3 4
If A=|-1 3 4 |, find A%
1 -3 4

Find A(B + C), if

1 2 3 -1 0 -2 0 3
A= , B= and C=
3 -1 0O 1 2 4 0 -3

I -1
If A=
2 -1

of x and y.

x 1
}, B= [ J and (A + B)2 = A2 + B2 find the values
y —

5
Show that A= { 5 4} satisfies the matrix equation A% + 4A — 21 = 0.

EXERCISE 4.1

40 10
- 5629 40 35 25
56 65 71 135 5
1. 293757;6537 2110 5 8/
4 6 3
31435
4. (@ 6 (b) 12 (¢) 8 (d) 12 (e) ab (f) mn
5. (@ 1 x 8 2x44x2 8x1 b) 1 x5 5x1
)1 x 12 2x6 3 x4 4x36x212x1
d1x16 2x8 4x48x216x1
6. (a) 4 (b) 5 (c) 4x5 (d) 20
(©) a4 =0; a3 =7, ayy =-3; ag5=1and a3 =3
p L1
2 3
0o -1 -2 4
2 1 0
9 2 3
L 2

MATHEMATICS
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Notes ﬁD
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mNotes

9
2
© |8
25
2

8. (a|° 8
6

0 1
() 1 2
2 3

2
7

25

18
49

49|

32
81
2

EXERCISE 4.2

I. (@G

(d) A,Dand F

@ C

5 10 1 1
(b) 10 20 ©) 2 4

15 30 3 9
(b) B (c) A,D,EandF
(¢) Dand F ® F

2. (@ a=2,b=10, c=6, d=-2

() a=2, b=3, c=2, d=5

3

() aZE,b=—2, c=2,d=-4

3. No

EXERCISE 4.3

28 8

1. (a){8 12}
2l

2
@ | , -9
2

4. N

(¢}

-2
-3 (©) 1

N | W

Matrices
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0 -5 10
2 @ |15 5 20
0o 21 2
303
©1, L 4
. 3 3
7 0
; |28 -14
0 7
15 0 5
4 @|20 710 0
-5 0 25
1o 1
3
4 2,
© 31 ) 5
— 0 =
L 3]

EXERCISE 4.4
3 2
L @ g 4 (b)
6 -5
® 19 10
1 3 6
2. (a) 5 3 5
01 9
© 19 2 10

Matrices

(d)

6
13

(b)

(d)
12 0 —4
-16 8 0
4 0 —20
3
2 2
21 0
Ly 2
L2 2 |

(b)

(d)

MODULE - |
Algebra

Notes ﬁn
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MODULE - |

0 -6 3 2 2 3
Algebra | 3 (@ |5 5 3 ® |3 -7 1
m 6 5 7 2 5 -7
Notes -
2 -2 -3 (1 -14 9
© |-3 7 -l @ [14 9 8
2 -5 7 16 15 14
0 0
4. (a) |0 0O
0 0
2 1 0 0 0 0 00 0
5. (a|-1 -2 3 (b)|0 0 0 () |0 0 0
(4 0 -] 0 00 000
2 18 15 3 17 21
6. (@) ¢ 4 ®) 151 27 © 27 3
-7 21
5 5
@121
5 5
[0 2 -1 3 -1 5
7. @ |5 5 ® g _3 © |_5s _g
-1 8 2 3 -5 9
@ |3 _ © |_g o ® |16 -3
EXERCISE 4.5
0 0 0
1. AB =[-6]; BA=|—4 -6 0|AB # BA
2 3 0

Matrices
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o) -3 13 -4
2. AB= | 6} BA=|1 -1 =2 AB # BA
- 2 -6 0
fax ay az .
3. AB= ; BA does not exist.
|bx by bz
[—2
4. BA=|_;|; AB does not exist.

5. Both AB and BA do not exist. AB does not exist since the number of
columns of A is not equal to the number of rows of B. BA also does not
exist since number of coluumns of B is not equal to the number of rows

of A.

0 5
6. AB = ; BA =
{6 15}

-2 -1
;AB # BA
4 17

4 -3 7 16 -8 -11
7. AB=|3 17 24|:BA=|16 11 3 |:AB # BA
14 13 17 10 21 11
10 0 10 0
8. AB= ; BA = ; AB # BA.
0 -1 0 -1
9. (a)x=3, y=-—1 b)x=-1, y=2
14 18 14 18 2 6
2. @ | , ® |, © |y 3
2 6 5 0 2 -3
@ g 3 © |7 3 D] g 15
1 2 1 2
13. @ |, g ®) |, g|: AC= BC.

Matrices

MATHEMATICS
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Notes ﬁD
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MODULE - I Here, A # B, and C # 0, yet AC = BC.

Algebra i.e. cancellation law does not hold good for matrices.

mNotes 4 7 - -1 1
14 @ | _; ® |_14 o9 © |3

-3 -8 -4 -7
@ 111 10 © | 14 9
We observe that A(B+C)=AB + AC.

16. X:[ﬂ 18. (a) No (b) No (c) No

EXERCISE 4.7

-6 6 -4 11
. [13 0,4 0
-1 10 4 2
2. x =2
4 -9 20 -22
319 6] |22 34
-5 15 5
4 |10 20 -8
|9 23 -15
(2 4] -1 2
1 0 0
0 3 0 —4
5. (a) (b) (©) { }
__1 2_ O 6 1 2
1 6] 1 6
0 -1 0 -1
(d) (e)
_O 2 -

We observe that (A + B)' =B’ + A’

Tea
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_ 4 6 MODULE - |
2 4 1 4 -6
6. (a)|_, J (b) |10 8| (¢ [_2 » 9} Algebra
] 9 7 @]
1 0 0 Notes
(@1[0 1 0
10 0 1

EXERCISE 4.7

1. x=7,y=-10, z=4 unique solution
2. x=0,y=1,z=2 unique solution
3. x=1,y=2,z=3 unique solution

4. x=3,y=1,z=1 unique solution

EXERCISE 4.8

1. Consistent, Infinitely many solution:
Solution set « {(x, y,z):x=1,y+z=0}
2. Consistent, Infinitly many solutions;

x=-1+2k y=3-2k z=kk is a scalar

3. Consistent; unique solution; x =2, y=2,z=1/2.

PRACTICE EXERCISE

. (a) 2 (b) 6 ) 9 (d) 12
L
-1 -3 2 1 5 4
2. @ |0 72 ® >4 © |7 s
1 - 8 7 2
L
2

165
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Algebra

G&Notes

10.

11.

12.

13.

(a) 3 x 1 (b) 1 x
@x=1,y=2, z=3
(c)x=3,y=-3z=3

3 2
(a) |:3 6:|

6 -7
@ 14 -

_3 yo 3
72 T2
(13 117
AB=_38 437 BA_
0 0
ABZ_O 0;BA=
0 0 0
000
0 00
9 1 1
-1 -4 10
x=1, y=-

0 0
0 0

| 311 Mathematics Vol-|(TSOSS) |

3 (c)3 x 2
b)x=35y=
(dx=2y=

2 4 0

(b) 8 4 (c) 9

34 -3
® |50 -1

5 10 17
6 14 24 ¢;

(d2x3
1,z=5
1,z=15

N

> AB # BA.

4 21 37

};ABzBA.

Matrices



Chapter

DETERMINANTS AND THEIR
APPLICATIONS

LEARNING OUTCOMES

After studying this chapter, student will be able to :

Compute determinant of square matrix.

State the properties of determinants

Evaluate a given determent by using properties of determinants

Solve a system of linear equations by applying Cramer's rule.

PREREQUISITES

System of linear equations, Number system including complex number.

INTRODUCTION

The determinant of a matrix is a number that is specially defined only for

square matrices. Determinants are very useful in the analysis and solution of sys-

tems of linear equations. Determinants also have wide applications in engineerging,

science and social science as well. In this chapter we will study various properties

of deterinants and also learn to solve system of linear equations by Cramer's rule.

| Determinants and their Applications 167
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m Notes

% DETERMINANT OF ORDER 2

Letus consider the following system of linear equations:
ax+by=c,

ax+by=c,

On solving this system of equations for x and y, we get

X = M and y =

GG G .
——=——— provided ab,—a,b = 0.

The number a b, —a b, determines whether the values ofx and y exist or

not.

The numbera b, —a, b, is called the value of the determinant, and we write

a a4

ie., a, belongstothe 1*row and 1* column
a,, belongs to the 1* row and 2" column
a,, belongs to the 2" row and 1% column

a,, belongs to the 2™ row and 2" column

8 EXPANSION OF A DETERMINANT OF ORDER 2

A formal rule for the expansion of a determinant of order 2 may be stated as
follows:

. app dp
In the determinant

21 92

write the elements in the following manner:
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Multiply the elements by the arrow. The sign of the arrow going downwards
is positive, i.e., a,, a,, and the sign of the arrow going upwards is negative, i.c.,

— 4, a,y.

Add these two products, i.e.,a,,.a,, +(-a,,.a,)or a, a,,—a, a,which

is the required value of the determinant.

Example 5.1: Evaluate:

6 4 a+b 2b +x+1l x+1
Mg - 15, atbp M) 2 1 ot
Solution:
6 4
) g o = (6x2)~(8x4)=12-32=-20
i |70 2 () atb)—a)2b)
=(a a — a
(i) 2a  a+b

=a?+2ab + b? - 4ab
=a*+b*>-2ab

= (a - b)?

X +x+1l x+1

¥ —x+1 x-1

(i)

=(2+x+ D) Ex-1D) -2 -x+1Dx+1)

B-D-3+1)
= -2
Example 5.2 : Find the value ofx if

x-3 X 2x-1 2x+1

x+1 4x+2

(i)

=6 (i)

x+1 x+3

MODULE -1
Algebra

Notes ﬁD
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MODULE - | | Solution:

Algebra x_3
i =(x=-3)(x+3)—x(x+1
§ (1) Now v+l x43 ( X )—x(x+1)
Notes
=(x?2-9)-x>-x=-x-9
According to the question,
=—x-9=6
= x =-15
. 2x—-1 2x+1
(i) Now =2x-D(@x+2)—-(x+1D)(2x+1)
x+1 4x+2

=82 +4dx—4x—2-2x2—x-2x-9
=6x2—3x-3=32x*-x-1)
According to the question,
32x2-x-1)=0
or, 2x>’—x—1=0
or, 2x*-2x +x—-1=0
o, 2x(x—1)+1(x —1)=0

or, 2x +1)(x —1)=0

or, x=1, —l.
2

N DETERMINANT OF ORDER 3

a b ¢

. a, b, ¢ . . ..
The expression |2 72 “2| contains nine quantitiesa , b, c,a,, b, c,,
a; by o

a,, b, and c, aranged in 3 rows and 3 columns, is called determinant of order 3

(or a determinant of third order). A determinant of order 3 has (3)2 =9 elements.

Determinants and their Applications |l
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Using double subscript notations, viz.,.a, ., a,.,a, ., a,,a,,d,.,a,,d.,d

117 77122 77132 7721° 7722% 77232 U317 U327 7U33

for the elements a, b, ¢, a,, b,, ¢,, a,, b, and c,. we write a determinant of

order 3 as follows:
a4 4
dyr Gy daxp
a3 4z Az
Usually a determinant, whether of order 2 or 3, is denoted byA or |A|, B .....etc.,
A= |ai1.|, where i=1,2,3and j=1,2,3.

XN DETERMINANT OF A SQUARE MATRIX

With each square matrix of numbers (we associate) a “determinant of the

matrix”. With the 1 x 1 matrix [a], we associate the determinant of order 1 and

with the only element a. The value of the determinant is a.

an

it |A|={

a, a,,—a, a,isdefined as the determinant of order 2. It is denoted by

a a
11 12
|A|={ }: a.a,.—a.,.da

11 22 21 12
a1 Adxp

a
12 . .
} be a square matrix of order 2, then the expression
a a

21 92

ap dp a3
: ‘o | o1 dyp Ay : :
With the 3 x 3 matrix , We associate the determinant,
d3; 4z dsg
aqi A 43

a a a . .
21 722 7231 and its value is defined to be
a3 dzp di3

a a a
= (Dap X

dz;  dsg

a3y ds3

| Determinants and their Applications
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3 6
Example5.3: If A = [1 5}, find |A|.

3 6
Solution: A = ‘1 5‘ =3x5-1x6=15-6=9

atb a
Example5.4:1f A = { 5 b} find |A|

atb a 5 .9
Solution: |A| = =(a+b)a-b)-bxa=a"—b" —ab

b a-b

Note: 1. The determinant of a unit matrix [ is 1.

2. A square matrix whose determinant is zero, is called the singular matrix.

RN EXPANSION OF A DETERMINANT OF ORDER 3

In Section 4.4, we have written

aip 4dp a3

a, a a, a a, a
2 4y 21 A3 21 Ay
yy Gy Ay3| = A X +(=Day, x a3 %

a3 di3 a3 d33 as;  dsz

az; dzp dsz
which can be further expanded as
an dp di3
ay; Gy aps| = ayy (Axas3 — A3pay3) — Ay (ay,a53 — az14,3)
a3z 43y d33
+ay3(aya3, — ayay;)
= Q) Ayl33 + A1pAy3a31 + Ay3051A3) — Ay 1Ay3a3) — A0y 33 — Ay3))d3
We notice that in the above method of expansion, each element of first row is

multiplied by the second order determinant obtained by deleting the row and column

in which the element lies.

Further, mark that the elements all @, , a, have been assigned positive, negative

a
11° 712
and positive signs, respectively. In other words, they are assigned positive and

Determinants and their Applications |l




| 311 Mathematics Vol4(TSOSS) |

MATHEMATICS

negative signs, alternatively, starting with positive sign. If the sum of the subscripts | MODULE - |

of the elements is an even number, we assign positive sign and if it is an odd number,

then we assign negative sign.

Therefore, a  has been assigned positive sign.

Note: We can expand the determinant using any row or column. The value ofthe
determinant will be the same whether we expand it using first row or first column or

any row or column, taking into consideration rule of sign as explained above.

Example5.5: Expand the determinant, using the first row

1 2 3

2 4 1

3 25

1 2 3
. 4 1 2 1 2 4

Solution: A=2 4 1|=1x —2x +3x

5 3 5 3 2

3 25

=1x(20-2)=2 x (10=3)+3 x (4—12)
=18-14-24
= -20.

Example 5.6 : Expand the determinant, by using the second column.

123
31 2
2 3 1
12 3
, 3 3 13
Solution: A =3 1 2/=(-Dx2[. ~|+Ix +(~1)3x
S 3 2 2 1 32

=2x0B-H{1x(1-6-3x(2-9)
=2-5+121

= 18.

| Determinants and their Applications
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Algebra

1. Find |A| if

mNotes [2+3 5 } © A= { cosol sina}

(@ A= > -3 —sina, cosa

[ sina+cosp cosl3+cosa} 0 [a+bi c+d1}

© A= c—di a-bi

| cosf—cosa  sino—sinf3

2. Find which of the following matrices are singular matrices :

5 51 -2 -3 1 2 3 0

(@ |5 11 (3 2 1@ |3 01

110 7 1 -1 -8 1 0 2 1
1 2 3
d (3 -1 2
4 1 5

3. Expand the determinant by using first row

2 31 2 1 =5 a b ¢
@ I 23 (b)y 0 -3 0 © b d e
3 21 4 2 —1 c e f
X y z
@ (1 2 1
2 3 2

XN MINORS AND COFACTORS

5.6.1 Minor of a;in |A]
To each element of a determinant, a number called its minor is associated.

The minor of an element is the value of the determinant obtained by deleting
the row and column containing the element.

Thus, the minor of an element a, in |A|is the value of the determinant obtained
by deleting the i row and j™ column of |A| and is denoted by M. For example,

3 2
5 7

Determinants and their Applications |l
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Example 5.7 : Find the minors of the elements of the determinant
A G 4
|Al=lay ayp ay

az; dzp ds;

Solution : Let Ml.j denote the minor of a,. Now, a occurs in the 1*row and 1*
column. Thus to find the minor of a,,, we delete the 1 strow and 1 st column of
Al.

dyy 43

M, = = dppdsy —A3pdys

aszy diz

Similarly, the minor M, of @, is given by

M. = ayp Ayl _ .
= = Aj1d33 — dy3dsy;
a3 dsg
a a
21 A
M;; = = djyG3p —d3dy)
asz; dxp
a a
12 3 ]
M, = = d1pds3 — A3y,
asp dsg
a a
1 93
M,, = = ap1d33 — a3 a3
a3 ds3
a4
My; = =443 —dzdpp
a3 dxp

Similarly we can find M, , M, and M,..
5.6.2 Cofactors of a in |A|

The cofactor of an element a, in a determinant is the minor of a, multiplied

by (—1)™ Itisusually denoted by (O Thus,

Cofactor of a,= Cij =D M,.

| Determinants and their Applications
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Example 5.8: Find the cofactors of the elements a, , a , and a, of the determinant

ap dp a4
|Al=lay ay ay

az; dzp dsz

Solution: The cofactor of any element a, is(=1)" M,, then
C,=CED"M, =(-1)(aya,-aya,)
= (ay,a,;—a;, ay)
C,=CD"M,=-M, =—(a, a,-a, a,)=(a,a, —a,a,)
and C,=(1)"'"M, =-M, =(a,a,~-a,a,)
= (a,a,—a,a,

Example 5.9: Find the minors and cofactors of the elements of the second row in
the determinant

|Al=

N Dn =
S N D
o AW

Solution: The elements of the second row are a, =35; a

6 3

Minor of a,, (i.e.,5) = 0 =48-0=48

13
Minor of a,, (i.e.,2) = ‘ 8‘ =8-21=-13

1 6
and Minorofa,, (i.e.,4) = ‘7 0‘ =0-42=-42

The corresponding cofactors will be
C,, =(1)*"M, =(-48)=-48
C,=(1y"M, =+-13)=-13
and C,,=(-1y" M, =—(-42)=42

Determinants and their Applications |l
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%@ VALUE OF A DETERMINANT USING COFACTOR

With the cofactor notation, we can give expansion of a determinant in terms

of the elements of anyone row or column and their corresponding cofactors.

ay dp ai3
|Al=|ay ayn ay|=a;C+a,C, +a;3C,

a3 4z dsz
= a,Cy1 +a5)Cy) +ap3Cy5

= a3,C3 +a3,C5; +a33C5;5

where Cij is the cofactor of the elemental,j

31 7
Example5.10: Evaluate A =|-6 2 -3| interms of the elements of fIrst row
8 4 5

and their corresponding cofactors, and then in terms of the elements of first column

and their corresponding cofactors. Verify that both the results are same.

Solution: Expanding the determinant in terms of the elements of first row and their
corresponding cofactors, we have the value of A, if we expand by R ,

A=aq C +a C.+a.C

11711 12712 13713

First we need to evaluate C,,C, and C |
2 -3
Cyy =(=D)""M,; = (-1)°
=D n =D 4 s
=10+12=22

-6 -3
Cy, =(-D)""’M,, = (-1
12 ( ) 12 ( )‘8 5‘
=—(-30+24)=6

C13 :(_1)1+3M13 — (_1)1+3

—6 2
8 4
=24 16=-40

MODULE -1
Algebra

Notes QD

WA =3%x22+1 % 647 x (—40) = 66+ 6 — 280 = —208
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MODULE -1 Expanding the deteminant A in terms of the elements of first column and

Algebra their corresponding cofactors, we have

mNOteS A= allcll + a12C12 + a13C13

2 -3
Now, ¢, =(-)""'M;, = (-1)?

=10+12=22
4 5

1 7
Cy =(-D*'M,, = (1)’ 4 s =—(5-28)=23

1 7
Cy =(=D)*"'"My, = (-1* ) 3‘:(-3-14):-17

SA=3%x22+4(-6)x23+8 x (-17)=66—-138 —136=-208

The value of the determinant by both the methods of expansion is —208.

Thus, we verify that both the results are same.

Example 5.11: Show that the sum of the products of the elements of one row (or
column) by the cofactors of another row (or column) is always zero.
Solution:
. 2 3
Consider, A =
4 5
Here, C,=5and C 6 =-4

Let usfindouta,, xC,; + a,, xC,

=4 x 5+5x (—4)
=20-20=0

Similarly, if we consider

1
A=|2
3

—_— W N

3
1
2

Determinants and their Applications |l
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1
Cy = (-1)*? =-7
22 ( ) )

| 311 Mathematics Vol4(TSOSS) |

2
Here  C, =(-1)*" |

I 2
Cpp =77 1==0-6)=5

Letus find out
a;1Cy1 + a,Ch + a13C
=l x (D {2(-7){3 x(5)
— 1-14+15=0

We can verify this property for any other row or column.

LX: 2 SARRUS DIAGRAM FOR THE EXPANSION OF
DETERMINANT OF ORDER 3

Another simple method for evaluating a determinant of order 3 is Sarrus

diagram.

Consider the detenninant :

an 4 a3
A =lay ay ay

a31 4z ds;
First of all we write down the three columns of the detenninant, and then

write the first row columns again as shown below

a1 ap a3 a1 ap

an N %) ped a3 A ay /" ay
as / &Y b4 as3 % as \‘032

From the sum oftenns connected with downward arrows, we subtract the

tenns connected with upwards arrows. Thus we get

| Determinants and their Applications
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all a22 a33 + a12 a23 a + a a a

a31 a22 a a32 a23 a a33 aZl a12
all(a22 33 o 32 23) alZ(aZI a33 23 31) + a13(a21 a a3la22)
_ ay dxp ayp  da3 dy; dp
= ap —ap + a3
dsy  ds3 ds;  dasz a3 d3p

which is equal to the value of given detenninant.

Example 5.12: Using Sarrus diagram, find the value of the detenninant

-1 2 3
A=|7 5 0
3 -2 4

Solution:

-1< 2 7/3\\2,1 712

~ S
A I A2
PR PR

The value of the detenninant
=(=1)(5)(-4) {2.0.3 {3.7(=2) —3.5.3—(=2).0. (1) = (-4).7.2
=20+0-42-45-0+56

=—11.

" EXERCISE 5.2

1. Find the minors and cofactors of the elements of the second row of the

determinant
1 2 3
-4 3 6
2 -7 9
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2.

Find the minors and cofactors of the elements of the third column of the

determinat

W = N
— N W
N = N

Evaluate each of the following determinants using cofactors:

2 1 0 -1 0 1 3 4 5

1 0 2 0 1 -1 -6 2 -3
(a) (b) (c)

3 4 3 1 -1 0 8 1 7

1 a bc b+c a a 1 a b+c
) 1 b ca ©) b c+a b () 1 b c+a

1 ¢ ab c c a+b 1 ¢ a+b

Using Sarrus diagram, evaluate each of the following determinants:

2 1 -3 0o 2 7 -1 —-a b
1 1 =2 1 2 5 -1
(a) (b) © ¢ ‘
2 -2 4 -1 2 - b ¢ 1
. Using Sarrus diagram, show that
a h g
h b f|=abc+2fgh—af* -bg* —ch’
g f c
Solve for x, the following equations:
x 00 x 33 *ox o1
1 2 3/=0 3 3 =0 0 2 1/=28
(a) (b) N (©)
1 0 2 2 33 3 1 4
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@

(i)

G

(iv)

™)

If each element of a row (or column) of a square matrix is zero, then the

determinant of that matrix is zero.

The value of the determinant of such a matrix can be easily found to be

zero by expanding it along a row (column) containing zeros.

If two rows (or columns) of a square matrix are interchanged, then the

sign of the determinant changes.
aq b« a b o
Let A=|a, by, ¢ | and B=|ag b ¢
a; by a; by o
( B is obtained by interchanging first and second rows of A)
det B = ¢;(=1)*"! (bye3 —b3cy) + b (-1)*"2 (ay03 — a5¢,)
+ ¢ (=1)*" (ayby — a3hy)
= —[ay(byc3 = bscy) = by(ayes —azey) + ¢ (aybs —azby )]
= —det A.

If each element of a row (or column) of a square matrix is multiplied by a
number £, then the determinant of the matrix obtained is & times the
determinant of the given matrix.

a b ¢ kay b ¢
Let A=|ay, by ¢ |, B= |kay b, ¢,
a; by o kay by
( B is obtained by multiplying the elements of first column of Abyk)

Ifthe cofactors of a;, a,, a3 in Aare A, A,, A5 then the cofactors of
kay, ka,, kay in B are also A, A,, A; respectively. Hence

det B = ka; A\ + ka, Ay + kay A,
=k(a) A +ay Ay +az3Ay)
= k(detA).
If A is square matrix of order 3 and kis a scalar, then | kA | =K|A).
By applying property (iii), three times, we get the result.
If two rows (or columns) of a square matrix are identical, then the deter-

minant of that matrix is zero.
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(vi)

(vii)

a b ¢
Let A: az bz 02

a b, o

(second and third rows are identical)
Then det A = q Al +b1B1 + Clcl
= 4 (0)+5(0)+¢,(0) = 0.

Ifthe corresponding elements of two rows (or columns) of a square ma-
trix are in the same ratio, then the determinant of that matrix is zero.

a b ¢
Let A= |ka kb ke
a3 by o
a b ¢
det A = kal kb] kcl

Then

ay by
a b ¢
=kla; b ¢ | by property (iii)
ay by ¢

= k(0) by property (v)
= 0.

Ifeach element in a row (or column) of a square matrix is the sum of two

numbers, then its determinant can be expressed as the sum of the deter-

minants of two square matrices as shown below.
a+x b g a b ¢ x boq

LetA=|a,+x, b, ¢ |,B=|ay, b, ¢ |, C=|x, by ¢,
ay;+x3 by o a; by x3 by o

If in A, the cofactors of a; +x;, a, +x,,a3 + x5 are A|,A,,A; then

the cofactors of

a,, a,,a; in B and of x;,x,,x; in C are also A;, A,, A5 respectively.

Now,
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MODULE.I detA = (a1+X1)A1+(a2 +)C2)A2 +(a3 +X3)A3
Algebra = (alAl + Clez +a3A3) +(x1A1 + szz +.X3A3)
m = det B +det C.
Notes
a+x b ¢ a b ool |x b g

a, + X9 bz Gl =a b2 () + Xy b2 (&)

a3 + X3 b3 C3 a3 b3 C3 .X3 b3 C3
(viii) Ifeach element of a row (or column) of a square matrix is multiplied by a
number k and added to the corresponding element of another row (or

column) of the matrix, then the determinant of the resultant matrix is equal

to the determinant of the given matrix.

a b« 4 by ¢
Let A= a, b2 (&) and B= a, + kal b2 + kbl CH + kcl

ay by c as bs ]
(B is obtained from A by multiplying each element of the 1* row of Aby
k and then adding them to the corresponding elements of the 2! row of
A)
a b ¢ aq b ¢

detB =|a, b, c,| + |kay kb, kcy| by property (vii)

a3 by o a; by
a b ¢
=la, b, ¢, |+0 by property (vi)
as by o
a b ¢

= |4 b2 (&) =detA

a3 by o

(ix) The sum of the products of the elements of a row (or column) with the
cofactors of the corresponding elements of another row (or column) of a
square matrix is zero.

Determinants and their Applications Jil
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a b ¢
Let A = a2 b2 02
ay by ¢

Consider the sum of the products of the elements of the second row with
the cofactors of the corresponding elements of the first row.,

i.e., a, Al +b2 Bl +Cz Cl

bz Cz az 02 az b2
= az — +Cz
by ¢ a3 &3 as by
a, b, o

=la, by, c,|=0 Dby property (v).
ay by ¢
(x) Ifthe elements of a square matrix are polynomials inx and its determinant

is zero when x = a, then x —a is a factor of the determinant of the
matrix.

fH(x) gi(x) Iy(x)

Let A(x) = | f2(x) g(x) M(x) |

f(x) g3(x) Ms(x)

Now det [A(x)] is a polynomial inx.

If det [A(a)]=0 then by Remainder theorem, x —q is a factor of det
[AG)].
(xi) Forany square matrix A, det A = det (A).
a b ¢ 4 dy a3
LetA=|a, b, ¢,|, then A"=|b b, b,
a3 by c G & G
The values of the cofactors of a;,b;,c;, are same in both A andA'.

HencedetA = a; A;+b, B, +¢,C,=det A"

(xii) Det(AB)=(detA) (det B) for matirces A, B of order 2.

arp A2 by by
Consider the matrices A = { }, B = { }
dry dp byy by
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det A= aj) ay; — ay apy; det B= by by, — by by,.
_a a
Now AB 1 a2 } {bll by, }
| dr1 Qo) by by
_|anbytan by a by tap by }

| Ay by +ag by ay by +ay; by

det (AB) = (ay; byy +ay by )(ag by +ay; byy )—(ay by +ay, by))
(anblz +ap; bzz)
= ayy ay by by + ayy axy by byy +ayy ayy by by +ayy ayy by by

—ayy ay by by —ayy ayy by byy —ayy ayy by by — ayy ayy by by
= ayy ayy by by +ayy ay by by — ayy ayy by byy — ayy ayy byy by,
=apdy (bn byy =by; by, )— ayp dyy (bll by, —byy b21)

= (all dyy — dyp dyy )(bu by, —byy b21)
= (det A)(detB).

If A and B are matrices of order three then also in a similar manner we

can show that
det(AB) = (det A)(detB).

This is true in general, for all matrices of order n,; the proof of this is

beyond the scope of this book.
(xiii)  For any positive integer n, det(A”") = (det A)".

(xiv) IfAisatriangular matrix (upper or lower), then determinant of A is the

product of the diagonal elements.
5.4.9 Notation
While evaluating determinants, we use the following notations.

(i) R; <> R, tomean thattherows R and R are interchanged.
1

(i) R; = AR, tomean that the elements of R are multiplied by 4.

@iii) R; = R;+AR; tomean that the elements of R are added with & times
the corresponding elements of R..
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Similar notation is used for other rows and columns.

laa2

Example 5.13: Showthat |1 a b*|= (a—b)(b—c)c—a).

1 a ¢
1 a G2
Solution : LHS. = |1l b p2
1 ¢ /2
Onapplying R, = (R, —-R;); R3—> (R5;—-R;) on LHS we get
I a a’
LHS. =0 b—a b*-d*

0 c—a c*—a*

On expanding the det. along the first column, we get
b—a  p2_,2

=1.
2

c—a ¢t -a
=(a-b)b—-c)(c—a) = RH.S.

M1} EVALUATION OF A DETERMINANT USING

PROPERTIES

Now we are in a position to evaluate a detenninant easily by applying the
aforesaid properties. The purpose of simplification of a detenninant is to make
maximum possible zeroes in a row (or column) by using the above properties and
then to expand the detenninant by that row (or column). We denote 1%, 2" and 3rd
rowby R ,R,, and R, respectively and 1*, 2" and 3rd column by C , C, and C3

respectively.
1 w?
w w1
Example 5.13: Show that =0
w1l ow

where w is a non-real cube root of unity.
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woow
Algebra Solution: A = |w w? 1

2
m Notes woobow

Add the sum of the 2" and 3" column to the 1% column. We write this
operationas C, —» C, +(C,+C))

l+w+w?> w  w 0O w w

CA=|lwrwr+l w1 =|0 w

2

1 | = 0 (onexpanding by C))

w+l+w 1 w 0 1 w

(since w is a non-real cube root of unity, therefore, 1 + w+w?=0).

1 a bc
Example 5.14: Show that [l b ca| = (a-b)(b-c)(c-a)
1 ¢ ab
1 a bc
Solution:A =1 b ca
1 ¢ ab
0 a—c bc—ab
=0 bme cazabl g, R ~R,=°i{COR, > R,~R]]
1 ¢ ab
0 a-c b(c—-a) 01 b
=0 b-c cla—a)=(a-c)b-c) =10 1 -a
I ¢ ab 1 ¢ ab

Expanding by C, we have

A=(a—c)b—-c)

1
1

=(a-c)b-c)(b—-a)

=(a—-b)b—-c)(c—a).

Determinants and their Applications |l
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b+c a a MODULE - |
Example 5.15:Provethat| b c+a b |=4abc Algebra
c c a+b m
Notes
b+c a a

Solution: A =| b c+a b

c c a+b

0 -2¢ -2b
=poera bR LR -R, +R)]
c c a+b

Expandingby R, we get

c+a b b b

c a+b

b c+a
=0 —(—2¢) -2b

c a+b

¢ c
= 2¢[b(a + b) — bc] - 2b[be — c(c + a)]
=2bcla+ b — ] - 2bc[b - ¢ - a]
=2bc[(a+b-c)—(b-c—a)l
=2bcla+b-c—b+c+al

=4abc.
Example 5.16 : Evaluate
a-b b-c c-a

A=\b—c c¢c—a a-b

c—a a-b b-c

a-b b-c c—-a
Solution: A=|b—c c¢c—a a-b

c—a a-b b-c
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0 b—c c—a

=10 ¢c—a a-b [C,— C,+C,+C,
0 a-b b-c

=0 on expanding by C,.

Example 5.17 : Prove that

1 be
1 ca
1 ab

Solution: A =

1
=1
1

a(b+c)
b(c+a) =0
c(a+b)

1 bc a(b+c)
1 ca b(c+a)
1 ab c(a+b)

bc bec+ab+ac
ca ca+bc+ba [C3—> C2+C3]
ab ab+ca+ch

1 bec 1

=(ab+bc+ca)[l ca 1

1 ab 1

=(ab + bc + ca) =0 (by property 3)

=0.

Example 5.18:

Solution :

Show that
—a*> ab ac
A=|ab -b*> bc|=4a’b*c?
ac be —c?
—a*> ab ac
A=lab -b* bc
ac bc -c*
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=abc |0 0 2c¢
R; > R;+R;

Rf+R2+Rq
0 2b 0
0 2c

:b—
ac(a)Zb 0

(on expanding by C))

=abc(—a) (—4bc)

= 4a’h>c?.
1+a 1 1
Example 5.19 : Showthat | 1 1+a 1 = a*(a+3)
1 1 l+a
l+a 1 1
Solution: A= 1 1+a 1
1 1 1+a
a+3 1 1
=la+3 1+a 1 [C1—>C1+C2+C3]
a+3 1 1+a

1 1 1
= (@+3)]1 1+a 1
1 1 l+a
I 0 0 C C.—C
_) J—
= (a+3)|]l a 2 2
1 0 a
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. Show that

. Show that

. Show that

. Show that

. Show that

. Show that

a 0
(a+3) x(l)‘o a‘

(a+3)(a)

a*(a+3).

EXERCISE 5.3

x+3 x X
x  x+3  x |=27(x+])

X x x+3

a-b-c 2a 2a
2b b—c—a 2b
2c 2c

= (a+b+c)

c—a->b

I+a 1 1
I 1+ 1
1 1

=bc+ca+ab+abc
1+¢

a+2b
a+b|=9b*(a+b)
a+2b a

a a+b
a+2b a
a+b

(a+D(a+2) a+2 1
(a+2)(a+3) a+3 1j=-2
(a+3)(a+4) a+4 1

a+b b+c c+a a b ¢
b+c c+a a+bl=2|b ¢ a

c+a a+b b+c c a b
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7. Evaluate
a a+b a+b+c (b+e)’ a* a*
@ [2a 3a+2b datdbilel o b (c+a) b
3a 6a+3b 10a+6b+3c c? & (a+b)?

8. Solve forx':

3x—-8 3 X
3 3x-8 3 [=0
3 3 3x-8

kR SOLUTION OF A SYSTEM OF LINEAR
EQUATIONS BY CRAMER’S RULE

Consider the system of lin ear equations

ax+by=c,
ax+by=c,

In this section, we shallieam to solve simultaneous linear equations in two

unknowns and three unknowns with the help of determinants.

A pair of values of x and y which satisfies both the equations simultaneously
is called a solution of the given system of linear equations and then the system is said

to be consistent.

When the constantsc, and ¢, on the R.H.S. of the equations are both zero,
the system is said to be homogeneous system: otherwise, the system is said to be
non-homogeneous. When the system is homogeneous, it has always a solution
x=y=0. Itis called a trival solution.

a b

If the determinant A = # (0 then the system of homogeneous

a b

equations has only one solution, i.e., the trival solutionx = y=0. However, if the

a b

detenninant D = = 0 then the system forms a pair of dependent equations

a, b
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MODULE - | | and in that case the system has infinite number of solutions, i.e., the system has also

Algebra | non-trival solutions. Detenninants are used mainly to solve non-homogeneous linear
m Notes equations in two or more variables.In this section, we shallieam to solve simultaneous
linear equations in two/three unknowns with the help of determinants. The method
of solving simultaneous linear equations by determinants is commonly known as

Cramer’s Rule.

5.11.1 Solving a system of Linear Equation in two variables
Consider the following system of linear equations:
2x+3y—-5=0 (1)
3x+5y-7=0 ..(11)

Usually, to fimd solutions of such a system, we apply the method of elimination.

Thus, first of all solving fory, we get
32x+3y—-5)=0
2B3x+5y-7)=0
3(2x) +33y) =3(5) ..(1i1)
2(3x) + 2(5y) =2(7) .(1v)
Subtracting (iii) from (iv), we get

[2(5)=3B3)]y=2(7)-3(5)

' 2 3 2 5

L€, |3 5 y=‘3 7‘
2 5

e
2 3 ..(A)
%
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Observe that in the detenninant of the numerator, the 1st column consists of

the coefficeints of x and the 2™ columns consist of the constant tenns.

And, in the detenninant of the denominator ofy, the I column and the 2™

column consist of the coefficients ofx and y respectively.
Similarly, solving (i) and (i1) forx, we get
52x+3y-5)=0

33x+5y-7)=0

5(2x)+5(31)=5(5)=0  ..(v)
136 +36y)=3(7) = 0 ...(vi)

Subtracting (vi) from (v), we get

152)=303)} x= {505 = 3(D;}

. 2 3 53
1.C., X =
35 7 5
7 5
> x=— ..(B
X= 5 (B)
35

Again observe that in the determinant of the numerator ofx, the 1* column

consists of the constant terms and the 2°¢ column consists of the coefficients of y.

And, in the determinant of the denominator ofx, the 1% column and the 2™

column consist of the coefficients ofx andy respectively.

D
Thus, x= —— =—L (sa
o (say)

MODULE -1
Algebra

Notes ﬁD

m[ Determinants and their Applications




MATHEMATICS | 311 Mathematics Vol-(TSOSS) |
MODULE - | ‘2

Algebra

and y= —— =—= (sa
Y= 53 (say)
mNotes 3 5

are the solutions of the given system of equations in the determinant form.

Consider another system of equations:
x+y=3 (1)
2x—-3y=1 (i)
Again, solving (i) and (ii) by elimination method, forx, we get
-3 (x+y)=303)
12x-3y)=1

. -3(x)-3(y)=-3(3) ...(1i1)
12x)-1@By) =1(1)  ...(v1)
Subtracting (iv) from (iii), we get
=3(x) - 1(2x)=-3(3) - 1(1)

= {SB)-1@)x=-33) - I(1)

ol o
Le., |, _3x=‘1 _3
301
o
1 1| D G
:

Again, we observe that in the determinant D , the 1* column consists of the

constant terms and the 2™ column consists of the coefficient ofy. Also, in D, the 1%

and the 2" columns consist of the coefficients of x and y respectively.
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Similarly, solving (1) and (ii) for ), we get
2(x)+2(»)=2(3) (V)
1(2x) +2(-3y) = 1(1) (V1)
Subtracting (v) from (vi), we get

{1(=3) -2} y=1(1) - 203)

T 13
ie., =
2 3P Th o
13
21
=y= =

Again, we observe that the determinant D is nothing but the determinant of
the coefficient of x and y and the determinant D, is obtained by replacing the

coefficient of y by the constant terms.

3 1 1 3
1 -3 2 1
Thus, x = T 1 and ¥ = [ 1
2 -3 2 3

are the solutions of the given equation

Therefore, if ax+by=c andax+by=c,

q b
b
X = cz 2 = &
a, b D
a, b,
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MODULE - | « o
Algebra e 4 o _D,
m an a b D
Notes a, b,
b
provided D = “ =0
a, b

5.11.2 Solution of a System of Linear Equations in Three Variables
Consider the following system of equations in three variables

x+2y+3z=4

x+y+z=1 (0

3x+3y+5z=3
1 2 3
Let D=2 1 1
3 35

1.e., D is the determinant of the coefficients of x, y and z.

x 2 3
Then, xD= 2x 1 1
3x 3 5

Multiplying the 2" column by y and the 3™ column by z and adding these to

the 1* column, we get

x+2y+3z 2 3
xD=|2x+y+z 1 1
3x+3y+5z 3 5

From (C), we get
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4 2 3 MODULE - |
xD= 1|1 1 1/=D, (say) Algebra
335 @]
Notes
D,

ie, xD=D, =>x=—
D

Similarly, we will get

4 3

I 1 2 4
Do=R2 Tl apy= 11
33 5 S

Then, as before, we can see that

yD=D, and zD =D,

D
Thus, x=3‘,y= D’ Z=3 where D # 0

are the solutions of the given system of linear equations in three variables.
Therefore, if

ax+by+tcz=d

ax+by+cz=d,

ax+by+cz=d,

is a given system of linear equations in three variables, then

d b ¢
dy, b, ¢

‘= dy by | Dy
a b ¢ D
a b o
a; by
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o|P

and z = =—

The method used for solving the system of equations in three variables can be
used in exactly the same way to solve a systemof 'n 'equations in 7 'unknowns.
The method discussed above is commonly known as Cramer’s rule, after the Swiss
Mathematician Gabriel Cramer (1704-1752).

Note: Cramer’s Rule does not apply if D=0
Example 5.20: Solve the following system of equations by Cramer’s Rule:
2x+3y=5

3x+5y=17

Solution: Now,
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aq b |5 3
D, = = =25-21=4
c bl |75
a ¢| 25
and D, = = =14-15=-1
a, ¢| |3 7
D, 4
Thus, by Cramer’s Rule X = D7 =4
= —= — :—1
and y D 1

are the solutions of the given system of equations.
Example 5.21: Solve the following system of equations by Cramer’s Rule:
2x+y—-3z=3
x+2y+z=7
3x-5y+2z=1

Solution: We have,

2 1 -3
D=1|1 2 1|=24+5-12-3)-3(-5-6)=18+1+33=52%0
3 -5 2

Also, to find D, the 1* column will be replaced by constants.

31 -3
D=5 2 1|=3(4+5)-1010-1)-3(-25-2)=27-9+81=99
1 -5 2

To find, D, 2" column will be replaced by constants.

2 3 -3
D,=|1 5 1[=2010-1)-32-3)-3(1-15)=18+3+42=63
31 2
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rd :
MODULE - To find D,, 3* column will be replaced by constants
Algebra by 1 3
m Dy=|1 2 5=22+25)-11-15)+3(-5-6)=35
Notes 3 —5 1

Thus, by Cramer’s Rule

D, 99

D 52

_D, _63
D 52

D33

D 52

and z

%3 CONDITION FOR A SYSTEM OF LINEAR
EQUATIONS TO HAVE A UNIQUE SOLUTION

Consider the system of equations

2x+3y=4
x—2y=3
2 3
Now D = ‘1 ‘=—4—3=—7¢0
4 3
Also D, = 3 =-8-9=-17
2 4
and D, = =6-4=2.
1 3
By Cramer's rule

X=—=—=

D =7 7
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O
A A
Thus, we find that for D # 0 and D, # 0, D, # 0 the given system of
-2

equations have non-zero, unique solution X = El and V= KR

In this case, we say that the given system of equations is consistent.

Now, consider the system of equations

x+2y =0
—2x+3y=0
2
Here, D = 3‘:3+4:7;«t0
D _[° 2—O 0=0
Also, = 3l =
d D, = 1 0—0 0=0
an 22 o N

S
ence, D7

D 0
and ¥ ="5=2=0

Thus, we find that for D # 0 and D, =D, = Othe given system of

equations will have only the trivial solution x =y =0.

We already know that Cramer’s rule does not apply if D=0. The two cases

arise namely system of equations having (i) no solution, (i1) infmitely many solutions.

Consider the system of equations
2x +4y =5
x+2y=3

MODULE -1
Algebra

Notes ﬁD
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2 4
Here, D= =4-4=0
1 2

Since D=0 Cramer’s rule does not apply here.

=10-12=-2
32

Now Dl = ‘

25
and Dz:‘l 3‘26—521

Hence,if D=0 and D, # 0,D, # 0 the equations will have no solution.

Similar is the case for a system of three equations in three variables.For that,
consider the system of equations

xX+ty+z=2

x+2y+3z=3

x+3y+5z=5 (1)

111
Here, D=1 2 3/=1(10-9)-1(5-3)+1(3-2)=1-2+1=0
135

x 1 1
Now, xD=|x 2 3
x 3 5

Multiplying the 2™ column by y and the 3™ column by z and adding them to

the 1 st column, we get

x+y+z 1 1 12 1 1
xD=x+2y+3z 2 3|=|3 2 3/=D, [using(1)]
x+3y+5z 3 5 |5 3 5

Thus, D, =2(10-9)-1(15-15)+1(9-10)=2-0—-1=1

Determinants and their Applications Jil
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So, xD =D = xD=1 MODULE -1
11 Algebra

=> X=— = — ich1i
D 0 which is undefined
Notes ﬁn

Similarly, we get yD =D, and zD =D,

where
1 2 1
D,=1 3 3=115-15)-2(5-3)+1(5-3)+1(5-3)=0-4+2=-2
1 55
1 1 2
and Dy; =1 2 3|=110-9)-1(5-3)+2(3-2)=1-2+2=1
1 3 5

D -2
yD=D = y= 32 = y:F which is undefined.

D 1
and zD=D = z = 31 :>z=6 which is undefined.

Thus,if D =0and D, # 0,D, # 0and D, # Othen the system of
equations will have no solution. In this case, we say that the system of equations

is inconsistent.
Now, consider the system of equations
x—y+3z=6

x+3y-3z=-4
5x4+3y+3z=10

Here,
1 -1 3
D=1 3 -31=19+9)+1(3+15)+3(3—-15)=18+18-36=0
5 3 3

m[ Determinants and their Applications
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MODULE - | Also,
Algebra 6 -1 3

§ D=4 3 3
Notes 10 3 3

= 6(9+9)+1(=12+30)+3(=12-30) =108 +18 =126 =0

1 6 3

D, =|l -4 -3]=1(-12+30)-6(3+15)+3(10+20)=18—-108+90=0
5 10 3
1 -1 6

D=1 3 -4/=130+12)+1(10+20)+6(3-15)=42+30=72=0
5 3 10

Thus, forD =0and D, =D,=D,=0 for the given system of equations

will have infimitely many solutions.
Consider the first two equations,
e, x—y+3z=6
x+3y—-3z=-4
These can be written as
xX—y=6-3z
x+3y=—4+3z

Solving these equations by determinants, we get

6-3z -1
x_—4+3z 3] 3(6-3z)+1(-4+3z) 18-9z-4+3z 14-62
1 -1 3+1 4 4
1 3
7-3z
x:
2
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and
1 6-3z
U 4432 1(-4432)-1(6-32)  -4+3z-6+3z  —10+62
A TR R 341 4 4
1 3
_—5+3Z
Y=

Let z = k, where k is any number, then we get

x_7—3k _ —5+3k ds—k
> >y 5 and z =

Thus, the system of equations has many solutions.
So, we conclude that for a given system of equations

() If D # 0 and atlease on of D, D,, ... D, is not equal to zero, then the

system will have non-zero, unique solution.

(@@ If D # 0 and each D;= 0 then the system has only the trivial solution

X)Xy = =x, =0.
(i) If D=0 and some D, # 0 then the system has no solution.

(iv) If D=0and each D;=0 then the system has infinitely many solutions.

Example 5.22: Solve the following system of equations:

X+y+tz=2
2x+7Ty—-3z=5
3x+5y-z=4.

Solution: Here,

11 1
D=2 7 -3[=1(-7+15)-1(-2+9)+1(10-21)=8-7-11=-10%0
35 -1

| Determinants and their Applications
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1
23| = 2(=7+15) - 1(-5+12)+1(25-28) = 16— 7-3=6

4 5 -1

[\
—

1
23 = 1(-5+12)-2(-2+9) +18—15)=7-14—-7 =14

-1

S
I
W

11 2
D,=[2 7 5/=1(28-25)-1(8=15)+2(10-21)=3+7-22=-12

3 5 4

Since D # 0and D, # 0, D, # 0, D, # 0, therefore, the system of

equations will have non-zero, unique solution.

Thus, by Cramer’s Rule

X=—=— = —
D -10 5
D, 14 7
"D 0 s
Dy _-12_6

D -10 5

are the solutions of the given system of equations.

Example 5.23: Detennine which of the following systems of equations will have a

unique solution; and also find the solutions in each case:

@® 2x-3y+4z=-9 i x+2y-z=0
SBx+4y+2z=-12 2x+y+2z=0
4x-2y-3z=-3 x=3y+z=0

(i) x+2y+z=2 (v) x+2y+3z=1
2x+y+2z=3 3x—y+2z=1
x=3y+z=4 4x+y+5z=2
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Solution:

»H 2x-3y+4z=-9
—3x+4y+2z=-12

4x-2y-3z=-3
2 -3 4
Here, D=|-3 4 2|=2(-12+4)+3(9-8)+4(6—-16)
4 -2 -3
=-16+3-40=-53#0
Also,
-9 -3 4
D, =12 4 2|=-9(-12+4)+3(36+6)+4(24+12)
-3 -2 3
=T72+126+144=342
2 -9 4
D, =|-3 -12 2|=2(36+6)+9(9-8)+4(9+48)
4 -3 2
=84+9+228=321
2 3 9
and Dy =|-3 4 -12[=2(-12-24)+3(9-48)-9(6-16)
4 -2 3

=—72+171+90=189
Since D # 0Oand D, # 0, D, # 0,D, # 0.

". The system of equations will have a non-zero unique solution which is

D, 342 -342

D -53 53

MODULE -1
Algebra

Notes ﬁn
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MODULE -| ,-Da 321321
Algebra b 53 53
N . ..Ds 189 189
Notes an D -53 53
@ x+2y-z=0
2x+y+2z=0
x=3y+z=0
Here,
1 2 -1
D=2 1 2[=1(0+6)-2(2-2)-1(-6-1)=7+7=14#0
1 -3 1
Also,
0 2 -1
D, =0 1 2|=0 (expandingby the I* column)
0 -3 1
1 0 -1
D,=2 0 2|=0
1 0 1
and
1 2 0
Dy;=12 1 0]=0
-3 0
Thus, we find that D # 0 and D, = D,= D, =0.
.. The system of linear equations will not have a unique solution. In fact, it
has a trivial solution x=0,y=0,z=0.

Determinants and their Applications Jil
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(@) x+2y+z=2
2x+y+2z=3
x-3y+z=4

1 2
Here D=2 1 2|=0
1 -3 1
Also

2 2 1
D, =3 1 2[=201+6)-23-8)+1(-9-4)=14+10-13=11
4 -3 1

121
D,=|2 3 2/=0(-C, =Cy)
1 4 1

12 2
andDy =2 1 3|=1(4+9)-2(8-3)+2(-6-1)=13+10-14=~11
1 -3 4

Since D=0andD, # 0, D,=0and D, # 0.

.. The system of equations has no solution.

(iv) x+2y+3z=1

3x—y+2z=1
4x+y+5z=2
1 2 3
Here, D=3 -1 2[=1(-5-2)-2(5-4)+3(1+2)=-7-2+9=0
4 1 5
1 2 3
Also, D; =|1 -1 2|=1(-5-2)-2(5-4)+3(1+2)=-7-2+9=0
2 1 5

MATHEMATICS

MODULE -1
Algebra

Notes ﬁn
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Algebra D, =3
4

m Notes

N =

3
2A=1(5-4)—1(15-8)+3(6-4)=1-7+6=0
5

1 2 1
and Dy =3 -1 1|=1(=2-1)-2(6—4)+1(3+4)=—-3-4+7=0
4 1 2

Therefore, the given system of equations will have infmitely many solutions.

e EXERCISE 5.4

1. Solve the following systems of equations by Cramer’s Rule
(a) 2x—4y=3 (b) x+2y=1
3x+y=5 2x+5y=3

2. Obtain the solutions of the systems of equations using Cramer’s Rule

(a) 2x+y+3z=1 (b) 2x-3y+2z=1
x+4y+6z=9 x+3y—z=-2
4x+3y+9z=5 x—y+3z=3

(¢) 3x—4y+5z=-6

x+y-2z=-1
2x+3y+z=5
3. Solve the following systems of equations:
3x+2y=4 6x-3y=-1
@ 2r4y=3 ®) 2xt2y=-3
(¢) 2x+3y+4z=38 (d) x+3y-z=4
3x+y—z=-2 3x-2y+5z=-4
4x—-y-5z=-9 Sx—y—-4z=-9

4. Determine which of the following systems of equations will have a unique
solution. Also, fmd the solution in such a case.

(a) x-2y=4 (b) 2x—y+z=0
—3x+5y=-7 x+y-2z=0
3x+2y-z=0

22| Determinants and their Applications Jil
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MODULE - |

Algebra

Notes ﬁD

a b
® The expression a,b, —a,b, is denoted by b

a b
e With each square matrix, a determinant of the matrix can be associated.

e The minor of any element in a determinant is obtained from the given deter-

minant by deleting the row and column in which the element lies.

e The cofactor of an element a; in a determinant is the minor of a; multiplied
by (-1)"7,

e A determinant can be expanded using any row or column. The value of the

determinant will be the same.

e A square matrix whose determinant has the value zero, is called asingular

matrix.

e The value of a determinant remains unchanged, if its rows and columns are

interchanged.

e Iftworows (or columns) of a determinant are interchanged, then the value of

the determinant changes in sign only.

e I[fany tworows (or columns) of a determinant are identical, then the value of

the determinant is zero.

e Ifeach element of a row (or column) of a determinant is multiplied by the

same constant, then the value of the determinant is multiplied by the constant.

e Ifany two rows (or columns) of a determinant are proportional, then its value

1S zero.

e Ifeach element of arow or column from of a determinant is expressed as the
sum (or differenence) of two or more terms, then the determinant can be

expressed as the sum ( or difference) of two or more determinants of the

same order.

[ Determinants and their Applications |EE—_— 2 1 3
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MODULE -1 e The value of a determinant does not change if to each element of a row (or
Algebra column) be added to (or subtracted from) some multiples of the correspond-
m ing elements of one or more rows (or columns).
Notes

e The solution of a system of linear equations

D D
isgivenby x=—L, y=—2 and z = —2>.
SVERDY =R Ve M ET
a b ¢ d b ¢ a d; ¢
a; by o dy by ¢ ay dy
a b 4
Dy =|a, b, d,| ,provided D #0.
ay by dy

e The system of linear equations
ax+by+cz=d,
ax+by+c,z=d,

ayx+byy +cyz =d,

(a) is consistent and has unique solution, when D# 0.

(b) isinconsistent and has no solution, when D=0and D,, D,, D,are not all
ZEro.

(c) 1s consistent and has infmitely many solutions, when

D=D,=D,=D,=0.

SUPPORTED WEBSITES

e http://www.wikipedia.org

e http://mathworld.wolfram.com

Determinants and their Applications Jil




| 311 Mathematics Vold(TSOSS) ' MATHEMATICS

PRACTICE EXERCISE

1 2 3
1. Find all the minors and cofactorsof |3 4 2.

2 31
43 1 6
2. Evaluate |35 7 4| byexpanding it using the flrst column.

17 3 2

3. Using Sarrus diagram, evaluate

2 -1 2
1 2 -3
3 -1 -4

4. Solve forx, if
0 1 0

x 2 x/=0

I 3 x

5. Using properties of determinants, show that

1 a o
@ 1 b b*|=(b—c)c—a)a—-Db)

1 ¢ ¢

I x+y x2+y2

O I y+z Y+ =(x-y)y—z)(z-x)

1 z+x z24+x?

6. Evaluate:
1> 22 3? 1w w
(a) 22 3% 4° ) W 1w
32 4% 5 woow 1

w being an imaginary cube-root of unity

MODULE -1
Algebra

Notes ﬁD
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7. Using Cramer s rule, solve the following system of linear equations:

8.

9.

1.

(a) x—2y=3 (b) 2x-3y=3 (c) x+y=2
2x+3y=4 3x+2y=11 4x-3y=3

Using Cramer’s rule, solve the following systems of equations:

(a) 2x+y+3z:8 (b) x—2y:3+z
3x+2y+3=z 2x+z=y
x+3z=1+2y 3-x=2z-3y

Determine which of the following systems of equations will have a unique

solution:

(a) 2x—-6y+1=0 (b) 2x-3y =5
x=3y+2=0 x=2y=6

(¢) 2x+3y+z=1 (d) 3x+y+2z=-1
4x-6y+z=3 X+2y—z=2
6x—-3y+2z=5 2x—y+3z=1

EXERCISE 5.1

(a) 11 (b) 1 ()0 (d) (a®+b?) - (2 + d?)

2. (a)and (d)

3.(a) 18 (b) —54 (¢) adf + 2bce — ae* — fb* — de?

1.

EXERCISE 5.2

My =3; Cp=3 My =-T;Cp3=7

Determinants and their Applications Jil
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3. (a) 19

) (a=b)(b=c)(c-a)

(b) 0 (©) -131

(e) 4abc @ 0

4. (a) 4 (b) 20 (©) a>+b2+c2+1
17
6. (a) x=2 (b)y x=2,3 (c) x=2, T

EXERCISE 5.3

7. (a) a3

¢ 21
. 35 93

EXERCISE 5.4

1
xX=—), = —
14 7 14

1
2. (a)x=—1,y=2,z=§

1. (a

© x=-1,y=2, z=1

3. () x=2,y=-1

(c) x=1,y=-2,z=3

4. (a) Yes; x=—06,y=-5

(c) x=0,y=3,z=2

PRACTICE EXERCISE

(b) 2abc(a+b+c)

(b)x=-1,y=1

b x——i =0 z—g
(b) V=0T

o
() x=-=
@ x=-Ly="2

(b)Yes; x=0,y=0,z=0

My3=—-1, M3, = =8, M3, =7, M35 =2

| Determinants and their Applications
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MODULE -1 Ci1=-2,C=LC;3=1GC=7Cy=-5,

Algebra Cpy=1,Cy =8, Cyy =7, Cyy = 2.

mNOteS 2. 0 3.-31 4.x=0, x=1

6. ()-8 (b) 0
17 2

7. =—,y=—— b)yx=3,y=1

(a) x V=7 (b)x=3,y

(C) 7:)’ 7
8 =2,y=3,z=3 b X_—l _—é Z_—l
. (a)x_ W Y=23,Z2= () 25y 29 B
9. (b) only




Chapter

INVERSE OF A MATRIX AND ITS
APPLICATION

LEARNING OUTCOMES

After studying this chapter, student will be able to :

e Compute adjoint and inverse of matrix
e Define singular and non singular matrices
e Represent system of linear equation in the matrix form AX =B

e Solve a system of linear equations by matrix method

PREREQUISITES

e Determinant of a matrix, Transport of a matrix.

INTRODUCTION

In this chapter, we will learn to find the inverse of a matrix, if it exists

later we will use matrix inverse to solve linear systems.

B Inverse of a Matix and its Application
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"[eD]VN=ENRN LET US CONSIDERAN EXAMPLE

Algebra

Abhinav spends Rs. 120 in buying 2 pens and 5 note books whereas
mNo tes Shantanu spends Rs. 100 in buying 4 pens and 3 note books. We will try to

find the cost of one pen and the cost of one note book using matrices.

Let the cost of 1 pen be Rs. x and the cost of 1 note book be Rs. y.

Then the above information can be written in matrix form as:

: G

This can be written as AX =B

120
where A = 25 X = x and B= .
4 3 y 100

Our aim is to find X = [X}
y

In order to find X, we need to find a matrix A~! so that X = A™'B
This matrix A~! is called the inverse of the matrix A.

In this lesson, we will try to find the existence of such matrices. We will

also learn to solve a system of linear equations using matrix method.

‘M SINGULAR AND NON SINGULAR MATRICES

We have already learnt that with each square matrix, a determinant is

25
associated. For any given matrix , say A = [4 3}

its determinant will be i It is denoted by |A]

1 3 1
Similarly, forthe matrix A =|{2 4 5| the corresponding determi-
1 -1 7

nant is

Inverse of a Matix and its Application |l
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1 3 1
Al=2 4 5
1 -1 7

A square matrix A4 is said to be singular if its determinant is zero,
ie. |Al =0.

A square matrix A is said to be non-singular if its determinant is non-zero,
re. |[Al# 0

Example 6.1 : Determine whether matrix A is singular or non-singular where

1 2 3
(a)A{;6 ﬂ by A=[0 1 2
1 4 1
. -6 -3
Solution: (a) Here, |A|=
4 2

=(=6)(2)-#) (=3)
=_12+12=0

Therefore, the given matrix 4 is a singular matrix.

1 2 3
b A=0 1 2
1 4 1
1 2 0 2 0 1
Here |A| = 1 -2 +3
4 1 11 1 4
=-7+4-3
=—-6 #0.

Therefore, the given matrix is non-singular.

Example 6.2 : Find the value ofx for which the following matrix is singular:

1 -2 3
A=l1 2 1
x 2 =3

MODULE - |
Algebra

Notes @]
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MODULE - | | Solution: Here,
Algebra | o 3

m Al =1 2 1
Notes 2 3
2 1 1 1 1 2
= +2 +3
2 -3 x -3 x 2

=1(-6 —2) +2(-3 —x) + 3(2 — 2x)
=-8—-6—-2x+ 6 — 6x.
= -8 — 8x.
Since the matrix A is singular, we have |A|=0.
Al = -8 — 8x = 0.
or x=-1.

Thus, the required value of x is —1.

1 6
Example 6.3: Given A :L 2} Show that |A| = |A'| where A' denotes the

transpose of the matrix.

1
Solution: Here, A = 6
3 2

. 1 3
This gives A’ =

6 2
1 6

Now, Al = 3 2 =1x2-3x6=-16 (1)
.13

and A = 6 2 =1x2-6x3=-16 (2

From (1) and (2) we find that |A| = |A]|

222 | Inverse of a Matix and its Application [Hll
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3 MINORS AND COFACTORS OF THE ELEMENTS
OF SQUARE MATRIX

a G 43

Consider a matrix A =|a,; a5 dadxn

a3y 43y ds3

The determinant of the matrix obtained by deleting the i™ row and ;”
column of 4, is called the minor of a, and is denotes by M,
Cofactor Ci]. of a, is defined as

C, = D7 M,

For example, M,, = Minor of a,,.

|91 42

as; dx

and C23 = Cofactor of a,,

— (_1)2+3 1\/[23
= (-1y M23

a ap
=-M,, ==

a3 dyp

Example 6.4: Find the minors and the cofactors of the elements of matrix

25
A:
, 25
Solution: For matrix A, |A|= ‘6 3‘ =6-30=-24

M,, (minor of 2) =3 C, = (D""M, =(-1)*M,, = 3.
M,, (minor of 5) =6 C,,=(-1)'"*M = (-1)) = M, =-6.
M,, (minor of 6) =5 C, = (=1)*"" M, = (-1)’ M, = -5.
M,, (minor of 3) =2 C,, = (-1)** M_= (-1)** M, = 2.

MODULE - |
Algebra

Notes @]
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MODULE - | Example 6.5: Find the minors and the cofactors of the elements of matrix
Algebra -1 3 6
m A=|2 5 =2
Notes 4 1 3
. 5 - ) 141
Solution: Here, M, = L3 =15+2=17,C;; = (-1)" M =17
M —‘2 _2‘—6+8—14-C = (-1)"*? M, =—14
12 — 4 3 - IR 12—
M ‘2 5‘—2—20——18'C = (=D M;=-18
13 — 4 1 - - > ~13 T 13—
M _P 6‘—9—6—3'C =(-)*"' M, =-3
21 — 1 3 - — s 21 T 21—
My = = (3-24)=27, €y = (<1 Myy=-27
22 — 4 3 - - > ~22 T 22
M, =| 3—(—1—12)——13-(: = (=1)* M,, =13
23 = 4 1 = = s ~23 — 23 —
M, = ° = (—6-30)=-36; C5, = (-1)*"! M5, =-36
31 — 5 _o - - > ~31 T 31—
M., =1 ¢ = (2-12)=-10; Cy, = (-1)*"* M3, =10
32 — ) i) - - > ~32 T 32—
Mo =| 32 6)=—11; Cs; = (=1)* My =11
and BT, 5—(—5— )=—11;C55 = (-] 33=

Inverse of a Matix and its Application |l
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e EXERCISE 6.1 o

1. Find the value of the determinant of following matrices:

4 5 6
a=|? ¢ ®B=|-1 0 1

@A=1, s -
2 12

2. Determine whether the following matrix are singular or non-singular.

1 -1 2
A=|> 2 by B=[2 3 1

@ A=) o (b) B=
4 5 -1

3. Find the minors of the following matrices:

REER Lo [0
@A=, 4 ®© B=1)

4.(a) Find the minors of the elements of the 2" row of matrix

1 2 3
A=|-1 0 4
2 31

(b) Find the minors of the elements of the 3 row of matrix

2 -1 3
A=|5 4 1
-2 0 3

5. Find the cofactors of the elements of each the following matrices:

3 [0 4
(@) A=[9 7} ®) B{—s 6}

6.(a) Find the cofactors of elements of the 2" row of matrix

2 0 1
A=|-1 3 0
4 -1 =2

MODULE - |
Algebra

Notes ﬁD
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t

(b) Find the cofactors of the elem ents of the 15 row of matrix

2 -1 5
A= 6 4 2
-5 3 0

23 -2 3 .
7. A= and A = verify that
4 5 7 4

(@) [A] = |A'] =°1TCo [B] = |B'|
(b) |AB| = [A| [B] = [BA|

X3 ADJOINT OF A SQUARE MATRIX

2 1 ] 2 1
Let A = be a matrix. Then A = .
5 7 5 7

Let M, and C, be the minor and cofactor of a .. respectively. Then
M, =17=7 C,=CED" . |7]=17.

M,=15=35 C,=(D"[5+=-5

M, =[1=1; C, = 1)""|l+=-1

M,=2=2;, C,=(1)y"2[=2

22

We replace each element of 4 by its cofactor and get

7 -5
B = 1 2 (1)
The transpose of the matrix B of co factors obtained in (1) above is
, 7 -1
B'= 5 5 (1)

The matrix B' obtained above is called the adjoint of matrix A. It is

denoted by Adj A.

Thus, adjoint of a given matrix is the transpose of the matrix whose

elements are the cofactors of the elements of the given matrix.
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Working Rule: To find the Adj A of a matrix A:

(a) replace each element of Aby its cofactor and obtain the matrix of
cofactors; and

(b) take the transpose of the marix of cofactors, obtained in (a).

Example 6.6: Find the adjoint of
-4 5
A =

-4 5
Solution: Here, |A|= ‘ y 3 Let Aij be the cofactor of the element a

i

Then A, = (-1 (-3) =-3 Ay =D (5)=-5
AL,=ED"2 Q)= Ay, = (-1)*"2 (—4) = 4.

We replace each element of A by its cofactor to obtain its matrix of
cofators as

-3 -2
5 4 (1)
Transpose of matrix in (1) is Adj 4.

3 -5
Thus, AdjA = .
2 -4

1 -1 2
Example 6.7: Find the adjointof A=|-3 4 1
5 2 -1
1 -1 2
Solution: Here, A=|-3 4 1
5 2 -1
Let Al.j be the cofactor of the element a; of |Al.
4 1
Then Au=(D" =-4-2=-6
2 -1
Ap =D =-(3-5)=2
p=(R 1=-(3-5)

M| Inverse of a Matix and its Application
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Algebra 5 2
-1 2

mNotes A, = (=D =—(-4)=3.
2 -1
1 2

A,, =(-1)**" =—1-10=-11.
22 ( ) 5 -1

A :(—1)2+31 =-+5=-7

23 5 2 .
-1 2

Ay =(=1)*" =—1-8=-9.

R

1
Ay =D

2
1‘:—(l+6):—7.

and A= (—1)3+3

1 -1
=4-3=1.
-3 4

Replacing the elements of A by their cofactors, we get the matrix of

cofactors as

6 2 -26
3 -11 -7
9 -7 1
6 3 -9
Thus, AdjA=| 2 -11 -7
26 -7 1

If A is any square matrix of order n, then A.(Adj A) = (Adj A) A=[A| T
where I 1s the unit matrix of order #.

Verification:

2 4
(1) ConsiderAz{ : 3}

4
3 or [A|=2x3-(-1)x(4)=10.

2
Then |Al= _1

Inverse of a Matix and its Application |l
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Here a1 =3 Ap=1, Ayy=-4 and A,, =2

) 3 4
Therefore, Adj A = L 5 }

. 2 4][3 -4
Now, A(AdjA)=

-1 31 2
(10 0] 1 0
|0 10] 0 1
3 5 7

2. Consider, A=|2 -3 1
1 1 2

Then, |A| =3(-6-1)-5@—-1)+72+3)=-1
Here An=-T, A, =-3; A3=5

Ay = =3 Ay =15 Ayy =2

Ay =26; Ay =115 Agy =19

-7 -3 26
Therefore, AdjA=|-3 -1 11
5 2 -19

35 71[7 -3 26
Now (A (AdA)=[2 -3 1{|-3 -1 11
1 1 2{|5 2 -19

1 0 0 1 0 0
=0 -1 ofl=¢D 0o 1 0
0 0 -1 00 1
-7 -3 26][3 5 7
Also, (AdjA).A=|-3 -1 11 |[2 -3 1
5 2 -19|l1 1 2
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-1 0 0 1 00
=10 -1 0|=(D]0 1 0|=|AlL
0 0 -1 00 1

Note: If A is a singular matrix, i.e. |[A|=0,thenA.(AdjA)=0

e EXERCISE 6.2

1. Find adjoint of the following matrices:

2 -1 a b
3 6 ® . 4
2. Find adjoint of the following matrices:
12 i i
V21 ®1;
Also verify in each case that A. (Adj A) = (Adj A) A= |A] L,.
3. Verify that

A. (Adj A) = (Adj A) A =|A| 15, where A is given by

cosa

sin o
(@) © |_ sino.  cosa

(2)

6 8 -1 3 71 Z
(a) (b) ; _7 A
-3 2 0 S
[cosa —sina 0 4 -6 1
(¢) | sinaa cosa O @ [=1 =1 1
0 0 1 4 11 -1
‘W:3 INVERSE OF A MATRIX

a

Consider a matrix A = {
C

b
a’} We will fmd, if possible, a matrix

B=[x y} such that AB = BA =1
u %

Inverse of a Matix and its Application |l
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‘ a bilx vy 1 0
1.€. L d}{u V}Z{O 1}
ax+bu ay+bv 1 0
ot Lerdu cy+dv}:[0 1}

On comparing both sides, we get

ax +by=1, ay+bv=0
cx tdu=0; cy+dv=1
Solving for x, y, u and v, we get
d -b —c a
= . y: N u = N V:
ad —bc ad —bc ad —bc ad —dc

X

provided ad—bc#0i.c., {a b} £0.

c d
d -b
Thus. B = ad—bc ad—bc
’ —c a
ad—bc ad-dc

1 d -b
or B= .
ad—-bc |- a

It may be verified that BA =1

It may be noted from above that, we have been able to find a matrix.

1 d -b 1 .
= = —AdjA (1)
ad—bc |—c a |A

This matrix B, is called the inverse of A and is denoted by A"

For a given matrix A, if there exists a matrix B such that AB =
BA =1, then B is called the multiplicative inverse of A. We write this as
B=4"
Note : Observe that if ad — bc =0 1i.e., |A] =0 the R.H.S. of (1)
does not exist and B = (A™) is not defined. This is the reason why we
need the matrix A to be non-singular in order that 4 possesses multiplicative
inverse. Hence only non-singular matrices possess multiplicative inverse.

Also B is non-singular and 4 =B™".
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MODULE - | | Example 6.8: Find the inverse of the matrix

Algebra At
2 -3
mNotes 4 5
Solution: A =
2 -3

Therefore, Al = —-12 —10=-22 # 0.

.. A is non-singular. It means A has an inverse. i.c. A™! exists.

AdiA=|" 7
Now, ) A= 5 4

3 5
-3 -5 22 20
A_lzLAde:L _|22 22
|A| -22 -2 4 1 =2
11 11
Note: Verify that AA™" =A'A =1
3 2 2
Example 6.9: Find the inverse of matrix A=|1 -1 6
5 4 -5
3 2 2
Solution: Here, A=|1 -1 6
5 4 -5

IA] = 3(5 — 24) — 2(=5 =30) — 2(4 + 5)

3(-19) — 2(=35) - 2(9)
=-57+70-18=-5 #0
A" exists.
Let A, be the cofactor of the element a,,.

Then,

Ay =DM

232 | Inverse of a Matix and its Application [Hll
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1
A12 = (—1)1+2 5

6
5‘ — (-5-30) =35,

1
A, = (D) A ‘ =4+5=9,

5

A, = (=D 2 =2 = —(-10+8) =2
2 4 -5 ’

3
A, = (=1)*"? =—-15+10 =-5,
22 ( ) 5 5‘

3 2
A, = (=1)*" =—(12-10) =2
21 =1 s 4‘ ( )

A31 = (—I)SH

-2
‘: 12-2 =10,
6

3
As, = (-1)**? | 6‘=—(18+2) =20,

3 2
and A33=(—1)3+31 _1‘=—3—2=—5
-19 35 9
Matrix of cofactors = | 2 =5 =2/,
10 -20 -5
-19 2 10
Hence AdjA=|35 -5 -20
9 -2 -5
. . -19 2 10
ATl — AdjA=— |35 -5 -20
| Al =5
9 -2 -5

Note: Verify that A”1 A = AA~1 =T,
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Example 6.10: If A = and B = ; find
Algebra 2 -1 0 -1
m () (AB)! (i) BTTA"! (iii) Is (AB)"! =B~1A"!
Notes
o 1 o2 1
Solution:(i) Here, AB = > 1l o -1
[2+0 1+0] [-2 1
| —440 241 |4 3
-2 1
. |AB| = =—6+4=-2=%0.
-4 3

Then (AB)™! exists.

Let us denote AB by Cl.j.

Let Cij be the cofactor of the element Cij of |C].

Then, C, =" @3)=3 Cyy = (1?1 (1) =-1

Cpp=(D"2(4)=4 C)=(-1)*2(2)=-2

. 3 -1
Hence, Adj (C) = [ }

4 -2

c*‘—iAdj(C)zi {3 _1}— _73 %

IC]| 2[4 2] | 5]
=1
C'=@aB)'=|2 2
21

(i) To find B~1 A, find we will find B~

2 1 2 1
- |B|= =2-0=2%0
0 -1 0 -1

B! exists.

Let Bij be the cofactor of the element bij of B.
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then B, =D (-1)=-1 B, =-D*"(1)=-1
B,=(-D"2(0)=0 B,, = (-1)**? (-2)=-2

-1 -1
Hence, Adj B = {O _2}

-1 -1

1 ) 1|-1 -1 — —

~B'=— AdjB=— =12 2
IB| 210 -2 0

1 0 1
Also, A= 5 Therefore, |A| = 5

Therefore, A~! exists.

Let Aij be the cofactor of the element a;; of |Al.

then A, =C-D"1ED=-1 A, =CD¥1©0)=0

A=D1 2)=-2 and A,,=(-1)*"2 (1) =1

. -1 0
Hence Adj A=|_,

oAt = Laga= L o0
AT T T2 1] T2

S N
Thus B'A' = |2 2 {2 J
0 -1 -
L N =31
=] 2 21=12 2
1 0-2  0+1 2 1

(i11) From (1) and (ii), we find that

-3
(AB)—I — B—IA—I — 7

[\
—_ [\)|»—t

Hence, (AB)'=B'A™.
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Find, if possible, the inverse of each of the following matrices:

13 12 2 -1
@ {2 5} ®) {—3 —4} © [1 0}

Find, ifpossible, the inverse ofeach of the following matrices :

1 0 2 3 -1 2
21 3 5 2 4
(a) (b)
41 2 1 -3 =2

Verify that A~!A = AA~! =1 for (a) and (b).

1 2 3 2 -1 0
If A=|0 -1 4|and B=|1 4 3|, verify that (AB)! =
3 1 5 3.0 =2
B1A"!
1 -2 3
Find (A)"if A= 0 -1 4|,
2 2 1
0 1 1 b+c c¢c—a b-a
fA=|1 0 1 andB=% c—b c+a a-—b|showthat ABA™!is
1 1 0 b—-c a-c a+b

a diagonal matrix.

cosx -sinx O

If ¢(x)=|sinx cosx Of show that [¢(x)]" = ¢(-x).

0 0 1
1 tan x .. .1 |cos2x —sin2x
If A= , show that A'A™" =| .
—tan x 1 sin2x cos2x
a b
If A= 1+bc |»show that aA~! = (a? + bc + 1) 1 — aA.
c

a
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-1 20
9. If A=|-1 1 1|, show that A=l = A2,
0 10
8 1 4
10. If A=l 4 -4 7|,show that A~l=A"
1 -8 4

AN SOLUTION OF A SYSTEM OF LINEAR
EQUATIONS

In earlier classes, you have learnt how to solve linear equations in two
or three unknowns (simultaneous equations). In solving such systems of equa-
tions, you used the process of elimination of variables. When the number of

variables invovled is large, such elimination process becomes tedious.

You have already learnt an alternative method, called Cramer’s Rule for

solving such systems of linear equations.

We will now illustrate another method called the matrix method, which
can be used to solve the system of equations in large number of unknowns.
For simplicity the illustrations will be for system of equations in two or three

unknowns.

6.5.1 MATRIXMETHOD

In this method, we flrst express the given system of equation in the matrix

form AX = B, where A4 is called the co-efflcient matrix.

For example, if the given system of equationis ax+by = ¢ and ax

+ by = c, and we express them in the matrix equation form as :

MdNEN

b
Here, A:{a1 1}, XZ[X} and B:{Cl}
a, b, y )

M| Inverse of a Matix and its Application
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MODULE - | If the given system of equations is ax + by + ¢z = d, and
Algebra ax +by+cz=d and ax + by + cz=d, then this system
m is expressed in the matrix equation form as :
Notes _
a b c||x d,
a by | |y|=|d,
a; by ||z dy |
aq b ¢ X d,
where, A=|a, b, ¢, |, X=|y|and B=|d,
ay by ¢ z d,

Before proceding to fmd the solution, we check whether the coefficient

matrix A4 is non-singular or not.

Note: If 4 is singular, then |[A| = 0. Hence, A™' does not exist and so, this

method does not work.
. ) a b X G
Consider equation AX= B, where A = X=| |and B = :
ay b, Y %)

When |A|# 0 when a b, —a,b, # 0 we multiply the equation AX =B
with A~ on both side and get

A" (AX) = A'B
= (A'A)X=A"B
= IX=A'B (- AT'A=D)

— X=A"B

Al = 1 by b

b, b
X = 1 ) | G
ab, —a)b, | —a, a; ||c,

Inverse of a Matix and its Application |l
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y a)b, —a,b, | —a,c; +ac,

byc, —bc,

aby — ayb
a;by — ayb

b,c, —bc —a,c, +a,c
Hence, x= 2112 and y=—21-12
a,by —ayby a;by —ayby

Example 6.11 : Using matrix method, solve the given system of linear equations.

4x-3y=11 (1)
3x+7y =-1

Solution: This system can be expressed in the matrix equation form as

S
s e[

(i)

S0, (i1) reduces to
AX =B ..(1ii)
4 -3
Now |Al = =284+9=37#0,
’ 3 7
Since  |A| # 0, A exists.

Now, on multiplying the equation AX = B with A~! *on both sides, we
get

AT (AX) = A'B
(A'A)X = A'B
ic, IX=AB.
X = A'B.
1 .
Hence, X = m (Adj A)B

MATHEMATICS
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MODULE - | (x] 1 [7 3] 177 3

Algebra y| 373 4]|-1] 37|33 -4
mNotes _x_:i_74}
y| 37[-37

So, x=2,y=-1 isisunique solution of the system of equations.

Example 6.12: Solve the following system of equations, using matrix method.
2x =3y =17
x+2y=3
Solution: The given system of equations in the matrix equation form, is

I MEH '

2 -3 X 7
where A = , X = and B =
RS UL

A=? Pleaxaix
Al=|] 213

=4+3=T7=%0

A7 exists.

. . 2 3
Since, Adj(A) = { }

-1 2
2 3
R B 12 3] 17 7
ATl = —adj(A) = = = 3
| A i(A) 7[—1 } -1 2 ...(11)
7 7
From (i), We have X =A"'B
2 3 9 23
S 142 =
or, X= 7 7 _ _| 7
L I T el R
7 7 7 7 7
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or, o 7. g
= Jia)
7 Notes
23 -1 , . .
Thus, x= - y 27 is the solution of this system of equations,

Example 6.13: Solve the following system of equations, using matrix method.

x+2y+3z=14
x=2y+z=0
2x+3y—z=5

Solution: The given equations expressed in the matrix equation form as :

1 2 31[x] [u4
1 2 1 =10 .

Y (i)
2 3 1|z

which is in the form AX = B, where

1 2 3 X 14
A=|1 -2 1|, X=|yland B=| 0
2 3 -1 z
X =A"B ..(11)
Here, |A| = 1(2 — 3) — 2(=1 =2) + 3(3 + 4)
= 26 # 0
. A7 exists.
-1 11 8
Also, AdjA=|3 -7 2
7 1 -4

_ 1 .
Hence, from (ii), we have X = A B = m AdjA.B
-1 11 8 | |14
X=—13 -7 2 0
7 1 -4

5
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or,

Thus, x=1;y=2 and z =3 is the solution of the given system of

equations.
Example 6.14 : Solve the following system of equations, using matrix method:

x+2y+z=2

2x —y+3z=3
x+3y—-z=0
Solution: The given system of equation can be represented in the matrix equation
form as :
1 2 1] |x 2
2 -1 3|y =|3
1 3 -1||z 0
e, AX=B (1)
1 2 1 X 2
Now, A=|2 -1 3|, X=|y|and B=|3
1 3 -1 z 0
1 2 1
Now, [Al=|2 -1 3 |=1(1-9)-2(-2-3))+1(6+1)=9%#0
1 3 -1
Hence, A7 exists.
-8 5 7
Also. AdGA=|5 -2 -1
7 -1 -5
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| 1—8 5 7

AT = —AdjA=—|5 2 -1
Al

7 -1 -5

Form (i) we have X = A™'B.

X 1—8 5 712
e, Y792 2 1|3
z 7 -1 =5(]0
__l_
» 9
LN I P
9 1 9
11
L9 ]
— 4 11 . . .
S0, x = 5 y = 3’ ZZ? is the solution of the given system.

A ¥ CRITERION FOR CONSISTENCY OF A SYSTEM
OF EQUATIONS

Let AX =B be a system of two or three linear equations.

Then, we have the following criteria:

1. If |A| # 0 then the system of equations is consistent and has a unique
solution, given by X =A"1B.

2. If |A| =00, then the system mayor may not be consistent and if con-
sistent, it does not have a unique solution. If in addition,

(a) (Adj A)B = 0, then the system is inconsistent.

(b) (Adj A)B = 0 then the system is consistent and has infmitely many
solutions.

Note: These criteria are true for a system of 'n' equations in 'n' variables as
well.

MODULE - |
Algebra

Notes @]

M| Inverse of a Matix and its Application




MATHEMATICS | 311 Mathematics Vol-(TSOSS) |

MODULE - |
Algebra

mNotes

We now, verify these with the help of the examples and fmd their solu-

tions wherever possible.

(@ 5x+7y=1
2x-3y=3

This system is consistent and has a unique solution, because % # 7 ,Here,

. . . 5 7 * = 1
the matrix equation is 2 3|y )

ie, AX-=B ()

5 7 X 1
where, A= , X= and B=
2 3 y 3

Here, |A] = 5(-3) 2p7=-15-14=-29 = 0

—1 1 . 1 -3 -7 ..
and A~ =— AdjA=—— ...(11)
| A 2912 5

From (i), we have X =A"'B

24
. x| 1 =3 T | 29 . 3
Le., y "9l s5|l3l” 13 [From (i) and (ii)]
29
24 -13 . . . .
Thus, x = 55 and y = BTy s the unique soolution of the given system
of equations.
3x+2y=7
(b) 6x+4y =28
: L . . 3_2 7
This system is incosisntent i.e. it has no solution because 6 2 # 3

In the matrix form the system can be written as

e bl

or, AX=B

Inverse of a Matix and its Application |l
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3 2 X 7
where A = , X = and B =
6 4 y 8

or, |Al=3x4-6x2=12-12=0

_ 4 -6
Adj A =
-6 3

Also (Adj A)B = = #0
-6 3|8 -18

Thus, the given system of equations is inconsistent.

3x—y=7
9x-3y=21

(©

} This system is consistent and has infinitely

. 3
many solutions, because 5 = 5 =

In the matrix fonn the system can be written as
3 1| x| |7
9 3|ly| |21

or AX =B, where

ol Spxels -l

3
Here, |A] = ‘9 3‘2 3X =(-3) -9x(-1)

= -94+9=0.
. -3 1
AdJA:{ }
-9 3

Adi B =| > 7% 20
Also (A A)B =| || 1= I=

.. The given system has an infmite number of solutions.
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Algebra (1) If|A] =0 and (Adj A) B # 0 then the system of equations will have

a non-zero, unique solution.
mNotes > uniq

(1) If|A| =0 and (Adj A) B = 0 then the system of equations will have

trivial solution x =y =z = 0.

(@) If |A|] =0 and (Adj A) B = 0 then the system of equations will have

infinitely many solutions.

(iv) If |A|=0and (Adj A) B # 0 then the system of equations is incon-

sistent.

Let us now consider another system of linear equations, where |A| =0

and (Adj A) B # 0 Consider the following system of equations
x+2y+z=>5
2x +y +2z=-1
x=-3y+z=6

In matrix equation form, the above system of equations can be written

as
2 1||x 5
2 1 2|yl =|-1
-3 1|z 6
e, AX=B
1 2 1 X 5
where A=|2 1 2|,X=|y|and B=|-1
1 -3 1 z 6
1 2 1
Now, [Al=12 1 2/=0 (s C =Cy)
1 -3 1
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7 =5 3 5
Also, (AdjA)B=|{ 0 0 0 —1| (Verify (Adj A) yourself]
-7 5 3 6
58
= 0 [#0
58

Since |A]=0 and (AdjA)B # 0

X
1.
y|=—(Adj A)B
|A|
z
58

0

= _ng which is undefined.

The given system of linear equation will have no solution.

Thus, we find that if |A| = 0 and (Adj A) B = 0 then the system of

equations will have no solution.

We can summarise the above finding as:

(i) If|A] =0 and (Adj A) B # 0 then the system of equations will have

a non-zero, unique solution.

(i) If|A| =0 and (Adj A) B = 0 then the system of equations will have

trivial solutions.

(@ii)) If |A] = 0 and (Adj A) B = 0 then the system of equations will have

infinitely many solutions.

(iv) If |A| =0 and (Adj A) B # 0 then the system of equations will have

no solution inconsistent.
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Example 6.15: Use matrix inversion method to solve the system of equations:

(1) 6x+4y=2
9x+6y=3

(i) 2x—-y+3z=1
x+2y-3z=2
Sy—5z=3

Solution: (i) The given system in the matrix equation form is

o allll]

e, AX =

6 4
where, A = X =
9 6

6

Now, 9

\AI=‘

B

s

4
6‘ =6x6-9%x4=36-36=0

.. The system has either infmitely solutions or no solution.

1-3k

Let x =k, then 6k + 4y =2 gives V¥ =—F—

2

Putting these values of x and y in the second equation, we have

9k+6(ﬂj =3
2

= 18+ 6 - 18k =6

= 6 =6, which is true.

.. The given system has infmitely many solutions. These are

1-3k
x=k Y =T, where k is any arbitrary number.
(i1) The given equations are
2x —y+3z=1 . (1)
x+2y—-—z=1 . (2)
5y —5z=3 .. (3)
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In matrix equation form, the given system of equations is

2 -1 370[x] [1
1 2 —1f|ly|=]2
0 5 5|z 3
ie, AX=B
2 -1 3] X 1
where, A=|1 2 -1|,X=|y| and B= |2
0 5 -5 z 3
2 -1 3
|A|12122_111_1312
= —]| =2 X +1X + I3 X
Now, 5 -5 lo -5 05
0 5 -5

= 2(-10+5)+1(-5-0)+3(5-0)
=-10-5+15=0
. The system has either infmitely many solutions or no solution

Let z=k. Then from (1), we have 2x —y =1 —3k; and from (2),

we have x + 2y =2 + k.
Now, we have a system of two equations, namely
2x —y=1-3k

x+2y=2+k
2 —1||x 1-3%
s =
1 2 ||y 2+k
2 -1 X 1-3%
Let A: ’X= ’Bz
5ol ]

2
Then |A|= ‘1 2‘ =4+1=5%#0

. A7l exists.

MATHEMATICS

MODULE - |
Algebra

Notes ﬁD

M| Inverse of a Matix and its Application




MATHEMATICS

| 311 Mathematics Vol-(TSOSS) |

MODULE - |
Algebra

mNotes

6.7

2 1 5
Here, Al :LAdj A= l =| 3
| A 51-1 2

[S—
NN | —

. The solution is X = A'B.

2 1 kil
15 5 {1—31{}_ 5
1 2 2+k k+§
55 5

4

x = —k+g, y= k+§, where k is any number.

Putting these values of x, y and z in (3), we get

5(k+§j—5k=3
5

= 5k+3-5k=3 = 3 =3, which is true.

.. The given system of equations has infmitely many solutions, given by
4 3 .
x:—k+§; y:k+g and z =k, where k is any number.

HOMOGENEOUS SYSTEM OF EQUATIONS

A system of linear equations AX = B with matrix, B = 0, a null matrix,

is called homogeneous system of equations.

Following are some systems of homogeneous equations:
2x+5y-3z=0 2x+y-3z=0

@ x-2y+z=0 () x-—2y+z=0
3x—y—6z=0 3x—y-2z=0

) x+2y=0
(i) 4
—2x+3y=0

Let us now solve a system of equations mentioned in (i1).

Given system is

Inverse of a Matix and its Application |l
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2r+5y-3z=0 MODULE - |
x=2y+z=0 Algebra

3x—y—62=0 @]
Notes

In matrix equation form, the system (ii) can be written as

2 5 3ilx 0
I 2 14ly|=|0
3 -1 -6|z 0
e, AX=0
2 5 3 X 0
where A=|1 -2 1|, X=|y|land B=|0
3 -1 -6 z 0

Now |A| =2(12 + 1) = 5(-6 =3) =3(-1 + 6)
=26 +45-15
=56 = 0
But B=0 = (Adj A)B = 0.

X
Thus, |y :ﬁ(Ade)B )
zZ

x=0; y=0; z=0.
ie., the system of equations will have trivial solution.

Remarks : For a homogeneous system of linear equations, if |A| # 0 and

(Adj A) B=0.
There will be only trivial solution.
Now, consider the system of equations mentioned in (iii) :

2x+y-3z=0
x=2y+z=0

3x—y-2z=0

B Inverse of a Matix and its Application | 2 5 1 I
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In matrix equation form, the above system (iii) can be written as

2 1 3| «x 0
-2 1|ly|=]|0
3 -1 2|z 0
e, AX=0
2 1 3 x 0
where, A=|1 -2 1|, X=|y|and B=1|0
3 -1 2 z 0
2 1 3
Now, |A|=[1 -2 1|=24+1)-1(-2-3)-3(-1+6)
3 -1 =2
=10+5-15
=0

Also, B=0 = (Adj A)B = 0.

1
|Al 0

oS O O

X
1 )
Thus, y|=—(AdjA)B =
z

The system of equations will have infmitelymany solutions which will be

non-trivial. Considering the first two equations, we get
2x +y =3z
xX—2y=-z
Solving, we get x =z, y =z let z =k, where k is any number.

Then x =k y =k 2z = k are the solutions of this system.

Note: For a system of homogenous equations, if |A| = 0 and (Adj A) B=0,

there will be infinitely many solutions.

252 | Inverse of a Matix and its Application [Hll
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Algebra
1. Solve the following system of equations, using the matrix inversion method: ﬁn
Notes

(@ 2x+3y=4 by x+y=7
x—2y:5 3X—7y=11

(c) 3x+4y-5=0 (d) 2x-3y+6=0
x-2y+6=0 6x+y—-8=0

2. Solve the following system of equations using matrix inversion method:

@ x+2y+z=3 (b) 2x+3y+z=13
2x—-y+3z=35 3x+2y-2=12
x+y—z=7 x+y+2z=35

(c) —x+2y+5z=2 d 2x+y-z=2
2x-3y+z=15 x+2y-3z=-1
—x+y+z=-3 Sx-y-2z=-1

3. Solve the following system of equations, using matrix inversion method:
@ x+y+z=0 @bB)3x-2y+3z=0 (¢c) x+y+1=0
2x—y+z=0 2x+y+z=0 y+z—-1=0
x—-2y+3z=0 4 -3y +2z=0 z+x=0

4. Determine whether the following system of equations are consistent or

not. If consistent, find the solution:

@ 2x-3y=S5 (b) 2x -3y =5
x+ y=7 4x — 6y = 10
(c) 3x+y+2z=3 d x+2y-3z2=0
- 2y—z=7 4x —y +2z=0
x4+ 15y + 3z =11 3x+5y—-4z=0

B Inverse of a Matix and its Application | 2 5 3 |
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m e A square matrix is said to be non-singular if its corresponding determi-
Notes

nant is non-zero.

e The determinant of the matrix A obtained by deleting the i row and j

column of 4, is called the minor of a; It is usually denoted by Ml.j.
e The cofactor of a; is defined as Cl.j = (=1)"7 Mij .

e Adjoint of a matrix 4 is the transpose of the matrix whose elements are
the cofactors of the elements of the determinat of given matrix. It is usually

denoted by Adj 4.
e IfA, is any square matrix of order », then

A (Adj A)= (AdjA) A=|A] L, where I isthe unit matrix of

order n.

e For a given non-singular square matrix A, if there exists anon-singular
square matrix B such thatAB = BA =1, then B is called the multiplica-

tive inverse ofA. It is written as B = AL,
e Only non-singular square matrices have multiplicative inverse.

o If a;x+b,y=c,and a,x + b,y = c, then we can express the system

in the matrix equation form as
ay by ||y )
c
Thus, A =|“ b x =|"|and B={l}then
ay b y ©
X-Ago_ L by b ||¢

Inverse of a Matix and its Application |l
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e A system of equations, given by AX =B , is said to be consistent and

has a unique solution, if |A| # 0.

e A system of equations, given by AX = B is said to be inconsistent, if |A]

= 0 and (Adj A)B #0.

e A system of equations, given by AX = B is said to be consistent and has

infinitely many solutions, if |A| =0 and (Adj A)B = 0.

e A system of equations, given by AX = B is said to be homogenous, if

B is the null matrix.

e A homogenous system of linear equations, AX = 0 has only a trivial

solution x; = x, = ..... =x,=0if |A] #0.

e A homogenous system of linear equations, AX =0 has infinitely many

solutions, |A| = 0.

SUPPORTIVE WEB SITES

http : //www.wikipedia.org

http:// math world . wolfram.com

PRACTICE EXERCISE

1. Find |A|, if
1 2 3 -1 3 4
@ A=|-3 10 (b) A=|7 50
2 5 4 0 1 2
2. Find the adjoint of A, if
2 3 7 1 -1 5
(@ A=|-1 4 5 b A=[3 1 2
-1 0 1 2 1 3

Also, verify that A(Adj A) = |A] I; = (Adj A) A for (a) and (b)

MODULE - |
Algebra

Notes @]
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MODULE - | 3. Find A7l ifexists, when

Algebra 3 6 2 1 3 -5
(a) (b) 3 5 (© 4 2

e o
Notes
Also, verify that (A")~! = (A~!)" for (a), (b) and (c)

4. Find the inverse of the matrix 4, if

1 0 0 12 0
@ A=|3 3 0 b) A=[0 3 -1
5 2 -1 10 2

5. Solve, using matrix inversion method, the following systems oflinear equations

@ x+2y=4 ®) 6x+4y=2
Y ox45y=9 Ox+6y=3
2x+y+z=1 x—y+z=4
3 e PR
(C) x_2y_Z:_ (d) 2x+y 3z=0
2 X+y+z=2
3y-5z=9
x+y—-2z=-1

(e) 3x_2y+Z:3
2x+y—z=0

6. Solve, using matrix inversion method

+& — 4’ i_é+§ :1, §+2_§ =3
X

23
_+_
X y z X y z y oz

7. Find non-trivial solution of the following system oflinear equations:

3x+2y+7z=0
4x-3y—-2z=0
5x+9y+23z=0

Inverse of a Matix and its Application |l
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8. Solve the following homogeneous equations:

x+y—z=0 x+2y-2z=0
3x+6y—-5z=0 S5x+4y-9z=0

9. Find the value of 'p' for which the equations

xX+2y+z=px
2x+y+z=py
X+y+2z=pz

have anon-trivial solution

10. Find the value of 4 for which the following system of equation becomes

consistent

2x-3y+4=0
5x=2y—-1=0
21x-8y+A=0

EXERCISE 6.1

1. (a) —12 (b) 10

2. (a) singular (b) non-singular

3. (@M =4 Mjp,=7 My, =-1; My, =3
b)) M;; =5 M,=2;M,;, =6, M,,=0

4. (@) My, =11; M,, =7, My; =1

M| Inverse of a Matix and its Application
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MODULE-I| 5 @ C,;=7 C;,=-9;Cy =2;C,,=3.
Algebra
9 () C;; = 6; Cpy=5; Cy =—4; Cpy = 0

mNotes 6. (@) Cyy=1; Cpy=—8; Cpy =-2

(b) C;; = —6; Cp, = 10; Cy3 =2

EXERCISE 6.2

6 1 d b cosa —sina
1. (a) 3 2 ® | _. 4 © |sino  cosa

1 2 AR
2 @5 ® | .

EXERCISE 6.3

5 3 ~4/10 -2/10 0 1
L@, ® 310 —1/10] © |1 2

1.2 2 LI S |
5 5 5 33 3
8 6 1 7 1 1
2. (a |- 2 _Z ®b |- =
5 5 5 12 3 12
2 11 7 1 1
5 5 5] 24 3 24
9 -8 =2
4. (AHY'=l8 7 2
-5 —4 -1

Inverse of a Matix and its Application |l
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EXERCISE 6.4 MODULE - |
Algebra
23 -6
L @ x="y=— (b) x=6,y=1 @]
Notes
© X=75 V=70 @ =35 7775
2 X—S—S -z Z——ﬂ b) x=2,y=3,z=0
* (a) ll’y 11, 11 () x_ 7y_ ’Z_
(c) x=2,y=-3,z=2 d x=1Ly=2,z=2
3. (@ x=0,y=0,z=0 (b) x=0,y=0,z=0
() x=0,y=0,z=0 d x=0,y=0,z=0
4 Consistent; X =— -2
. (a) Consistent; 5 y 5

(b) Consistent; infinitely many solutions
(c¢) Inconsistent

(d) Trivial solution, x=y=z=0

PRACTICE EXERCISE

1. (@ -31 (b) —24
(4 -3 -13 18 -7
4 5 3 “13 13 13
2. (@ (b)
4 3 -5 5 1 4
-1 5 -l
18 6 7 7
@7 CHERE
136 12 7 7
-1 =5
7 14
© |2 =
L7 14

M| Inverse of a Matix and its Application
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r 7 3 -1

- 0 =

Algebra Lo o 5 3
1Y | S
4. a) -1 = by | — — -—

Notes (a) 1 i 0 (b) 4 2 2

-3 1 3

s 2 31

T3] 4 2 4]

5. (@ x=2, y=1

(b) x=k, y= k

N | —
N | W

s Z =77

2
d x=2,y=-1,z=1

11 Z_1
YTy 2

N | —

(©) x=1y=

(e) x=

6. x=2,y=3,z=35

7. x=-k, y=-2k z=k

8. @A) x=k, y=2k z=3k
) x=y=z=k

9. p=1,-1,4

10. A = 5.

Inverse of a Matix and its Application |l




Chapter

7

PERMUTATIONS AND
COMBINATIONS

LEARNING OUTCOMES

After studying this lesson, you will be able to :

find out the number of ways in which a given number of objects can be
arranged;

state the Fundamental Principle of Counting;
define n ! and evaluate it for defferent values of 7 ;

state that permutation is an arrangement and write the meaning of "P ..

(n—‘r)!

show that (i) (n+1)y"P =(n+1)P_ (ii) "P_,,=(n—7r)"P,

state that "P_ = and apply this to solve problems;

state that a combination is a selection and write the meaning of "C. .

distinguish between permutations and combinations;

derive "C, = and apply the result to solve problems;

n!
r !( n— r)!
derive the relation "P =r! "C,
verify that "C = "C _ and give its interpretation; and

derive "C +"C _,=(n+1)C, and apply the result to solve problems.

M| Permutations and Combinations
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Algebra e Number Systems

m Notes e Four Fundamental Operations
INTRODUCTION

We must have come across situations like choosing five questions out of eight

questions ina question paper or which items to be chosen from the menu card in a
hotel etc. We discuss such situations in this chapter. This chapter 'permutations
and combinations' is an important chapter in algebra in view of a number of appli-
cations in day - to - day life and in the theory of probability. While learning'permu-
tations and combinations', we should be in a position to clearly see whether the
concept of a permutation or the concept of a combination is applicable in a given
situation. In general, a combination is only a selection while a permutation involves
two steps, namely, selection and arrangement. For example, forming a three digit
number using the digits 1,2, 3,4, 5 isa'permutation’. This involves two steps. In
the first step we select three digits, say 2,4, 5. In the second step, we arrange them
to form a three digit number such as 245, 452, 542 etc. Forming a set with three
elements using the digits 1, 2, 3,4, 5 isa'combination'. This involves only one
process, namely, selection of three elements, say 2, 4, 5. Then the element set
formed is {2, 4, 5} which is same as the sets {4, 5, 2} {5, 4, 2} etc. Thus,
whenever there is importance to the arrangement or order in which the objects are
placed, then it is a ']permutation’ and if there is no importance to the arrangement
or order, but only selection is required, then it is a¢ombination’. These notions
will help us to arrive at the number of arrangements or combinations without actu-

ally counting them.

Before going into formal definitions, we introduce factorial notation, which
is required to calculate the number of permutations or combinations. If z isa
positive integer, we definen! (read as n factorial) by mathematical induction as
follows.

I =1
n.((n=10)" ifn>1.

and n!

Permutations and Combinations il
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Forexample, 2! 2(1)=2

3 = 3@2HY=32 =6

4 = 4@3H)=46 =24

51 = 5(4!)=5.24=120 etc.

By convention , we define 0! =1

Throughout this chapter the lettersn, » denote nonnegative integers unless
otherwise mentioned.

(8 COUNTING PRINCIPLE

Letus now solve the problem mentioned in the introduction. We will writes,,

t, to denote trains from Bangalore to Itarsiand T , T,, T, for the trains from Itarsi
to Allahabad. Suppose I take ¢, to travel from Bangalore to Itarsi. Then from Itarsi
I cantake T, or T, or T,. So the possibilities are ¢, T, #,T, and ,T, where 7, T,
denotes travel from Bangalore to Itarsi by ¢, and travel from Itarsi to Allahabad by
T,. Similarly, if T take 7, to travel from Bangalore to Itarsi, then the possibilities are
t,T,'t,T,and £,T;". Thus, in all there are 6 (2 x 3) possible ways of travelling

from Bangalore to Allahabad.

Here we had a small number of trains and thus could list all possibilities. Had
there been 10 trains from Bangalore to Itarsi and 15 trains from Itarsi to Allahabad,
the task would have beenvery tedious. Here the Fundamental Principle of Counting

or simply the Counting Principle comes In use:

If any event can occur in m ways and after it happens in anyone of these
ways, a second event can occur in n ways, then both the events together can occur

inm X n ways.
Example 7.1: How many multiples of 5 are there from 10 to 95 ?

Solution: As you know, multiples of 5 are integers having 0 or 5 in the digit to the

extreme right (i.e. the unit’s place).
The first digit from the right can be chosen in 2 ways.

The second digit can be anyone of 1,2,3,4,5,6,7,8.9.

MODULE -|
Algebra

Notes @]

M| Permutations and Combinations
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MODULE -1 i.e., There are 9 choices for the second digit.

Algebra Thus, there are 2 x 9 =18 multiples of 5 from 10 to 95.

m Notes | Example 7.2: In a city, the bus route numbers consist of a natural number less than
100, followed by one of the lettersA,B, C,D,E andF. How many different bus

routes are possible?

Solution: The number can be anyone of the natural numbers from 1 to 99.
There are 99 choices for the number.
The letter can be chosen in 6 ways.

.. Number of possible bus routes are 99 x 6=1594.

e EXERCISE 7.1 T

1. (a) How many 3 digit numbers are multiples of 5?
(b) A coinistossed thrice. How many possible outcomes are there?

(c) Ifyou have 3 shirts and 4 pairs of trousers and any shirt can be worn with
any pair of trousers, in how many ways can you wear your shirts and

pairs of trousers?

(d) Atourist wants to go to another country by ship and return by air. She has
a choice of 5 different ships to go by and 4 airlines to return by. In how

many ways can she perform the joumey?

2. (a) Inhow many ways can two vacancies be filled from among 4 men and 12

women if one vacancy is filled by a man and the other by a woman?

(b) Flooring and painting of the walls of a room needs to be done. The floor-
ing can be done in 3 colours and painting of walls can be done in 12
colours. If any colour combination is allowed, fmd the number of ways of

flooring and painting the walls of the room.

So far, we have applied the counting principle for two events. But it can be

extended to three or more, as you can see from the following examples:

Permutations and Combinations il
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Example 7.3: There are 3 questions in a question paper. If the questions have 4,3 | MODULE -1

and 2 solutionsvely, find the total number of solutions . Algebra
Solution: Here question 1 has 4 solutions, @]
Notes
question 2 has 3 solutions
and question 3 has 2 solutions.
.. By the multiplication (counting) rule,
total number of solutions =4 x 3 x 2
=24

Example 7.4: Consider the word ROTOR. Whichever way you read it, from left
to right or from right to left, you get the same word. Such a word is known as

palindrome. Find the maximum possible number of 5-letter palindromes.

Solution: The first letter from the right can be chosen in 26 ways because there are

26 alphabets.
Having chosen this, the second letter can be chosen in 26 ways
.. The first two letters can chosen in 26 x 26 =676 ways
Having chosen the first two letters, the third letter can be chosen in 26 ways.
.. All the three letters can be chosen in 676 x 26 =17576 ways.

It implies that the maximum possible number of five letter palindromes is
17576 because the fourth letter is the same as the second letter and the fifth letter

is the same as the first letter.

Note: In Example 7.4 we found the maximum possible number of five letter
palindromes. There cannot be more than 17576. But this does not mean that
there are 17576 palindromes. Because some of the choices like CCCCC may

not be meaningful words in the English language.

M| Permutations and Combinations
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Example 7.5: How many 3-digit numbers can be formed with the digits 1,4,7,8
and 9 if the digits are not repeated.

Solution: Three digit number will have unit’s, ten’s and hundred’s place.
Out of 5 given digits anyone can take the unit’s place.
This can be done in 5 ways. ... (1)

After filling the unit’s place, any of the four remaining digits can take the ten’s

place.
This can be done in 4 ways. ... (i1)

After filling in ten’s place, hundred’s place can be filled from any of the three

remaining digits.
This can be done in 3 ways. . .. (iii)
.. By counting principle, the number of3 digit numbers=5x4x 3 =60
Let us now state the General Counting Principle

If there are n events and if the first event can occur inm, ways, the second
event can occur inm, ways after the first event has occured, the third event can
occur in m, ways after the second event has ocurred, and so on, then all the n

events can occurin m, X m., X ...X m X m_ways.
1 2 n—1 n

Example 7.6: Suppose you can travel from a place A to a place B by 3 buses,
from place B to place C by 4 buses, from place C to place D by 2 buses and from

place D to place E by 3 buses. In how many ways can you travel from A to E?
Solution: The bus from A to B can be selected in 3 ways.

The bus from B to C can be selected in 4 ways.

The bus from C to D can be selected in 2 ways.

The bus from D to E can be selected in 3 ways.

So, by the General Counting Principle, one can travel from A to E in

3 x4x2x 3 ways=72ways.
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e EXERCISE 7.2 o

1. (a) What is the maximum number of 6-letter palindromes?

(b) Whatis the number of 6-digit palindromic numbers which do not have 0 in
the first digit?

2.(a) In a school there are 5 English teachers, 7 Hindi teachers and 3 French
teachers. A three member committee is to be formed with one teacher repre-

senting each language. In how many ways can this be done?

(b) b)Inacollege students union election, 4 students are contesting for the post
of President. 5 students are contesting for the post of Vice-president and 3
students are contesting for the post of Secretary. Find the number of possible

results.

3.(a) How many three digit numbers greater than 600 can be formed using the

digits 1,2,5,6,8 without repeating the digits?

(b) A person wants to make a time table for 4 periods. He has to fix one period
each for English, Mathematics, Economics and Commerce. How many dif-

ferent time tables can he make?

(1 PERMUTATIONS

Suppose you want to arrange your books on a shelf. If you have only one

book, there is onlyone way of arranging it. Suppose you have two books, one of]
History and one of Geography. You can arrange the Geography and History books
in two ways. Geography book first and the History book next, GH or History
book first and Geography book next; HG In other words, there are two

arrangements of the two books.

Now, suppose you want to add a Mathematics book also to the shelf. After
arranging History and Geography books in one of the two ways, say GH, you can
put Mathematics book in one of the following ways: MGH, GA1H or GHM Similarly,

corresponding to HG, you have three other ways of arranging the books. So, by

. Permutations and Combinations
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MODULE -1 | the Counting Principle, you can arrange Mathematics, Geography and History books
Algebra in 3 x 2 ways =6 ways.

m By permutation we mean an arrangement of objects in a particular order. In
Notes . . .
the above example, we were discussing the number of permutations of one book

or two books.

In general, if you want to find the number of permutations ofn objectsn > 1,

how can you do it? Let us see if we can fmd an answer to this.

Similar to what we saw in the case of books, there is one permutation of 1
object,2 x 1 permutations of two objects and 3 x 2 x 1 permutations of 3 objects.
It maybe that, there are nx (n —1)x (n—2)x ... x 2x 1 permutations of n

objects. In fact, it is so, as you will see when we prove the following result.
Theorem 7.1 The total number of permutations ofn objectsisn (n — 1) ... .2.1.
Proof: We have to find the number of possible arrangements of z different objects.

The first place in an arrangement can be filled in # different ways. Once it has
been done, the second place can be filled by any of the remaining ¢ — 1) objects
and so this can be done in ¢z — 1) ways. Similarly, once the first two places have
been filled, the third can be filled in ¢ —2) ways and so on. The last place in the
arrangement can be filled only in one way, because in this case we are left with only

one object.

Using the counting principle, the total number of arrangements of % different
objectsisn(n —1)(n —2)........ 2.1......(7.1)

The productn (n — 1) ... 2.1 occurs so often in Mathematics that it deserves

aname and notation. It is usually denoted byn! (or by |7 read as n factorial).
n!l=nn-1)(n-2) . 3.2.1

Here is an example to help you familiarise yourself with this notation.

Example 7.7: Evaluate (a)3! (b) 2!+4! (b)2! x 3!

Solution: (a) 3!'=3 x 2 x 1=6

(b) 21=2x 1 =2
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41=4x3x2x1=24
Therefore, 2! +4!1=2+24 =26.
()2!x 31=2x 6=12
Notice that n! satisfies the relation
n!'=nx(m-1)! ..(7.2)
This is because, n (n—1)! =n.[(n—1)(n-2)...3.2.1]
=n.n-1)(n-2)..3.2.1

=n!

Of course, the above relation is valid only for n>2 because 0! has not
been defined so far. Let us see if we can define 0! to be consistent with the relation.

In fact, if we define
0!'=1 ..(7.3)
then the relation 7.2 holds forn =1 also.

Example 7.8 : Suppose you want to arrange your English, Hindi, Mathematics,
History, Geography and Science books on a shelf. In how many ways can

youdo it?
Solution: We have to arrange 6 books.
The number of permutations of 7 objectsis n!=n(n—1)

Here n = 6 and therefore, number of permutations is 6.5.4.3.2.1 = 720.

e EXERCISE 7.3 .

1. (a)Evaluate: G) 6! (i) 7! (iii) 7! +3 1

: 5!
(iv) 6! x 4! (v) 320

(b) Which of the following statements are true?
1H2!'x3!=6! (i) 2!+4!=6!

(i) 3! divides4! (iv)41-21=21
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2. (a) 5 students are staying in a dormitory. In how many ways can you allot 5

beds to them?
(b) Inhow many ways can the letters of the word ‘TRIANGLE’ be arranged?

(c) How many four digit numbers can be formed with digits 1, 2, 3 and 4 and

with distinct digits?

(<3 PERMUTATION OF r OBJECTS OUT OF n OBJECTS

Suppose you have five story books and you want to distribute one each to

Asha, Akhtar and Jasvinder. In how many ways can you do it? You can give anyone
of the five books to Asha and after that you can give anyone of the remaining four
books to Akhtar. After that, you can Algebra give one of the remaining three books
to Jasvinder. So, by the Counting Principle, you can distribute the books in5 x 4 x 3

ie.60 ways.

More generally, suppose you have to arranger objects out ofn objects. In
how many ways can you do it? Let us view this in the following way. Suppose you
have n objects and you have to arrange r of these in 7 boxes, one object in each

box.

n ways n—1 ways n—r+ 1 ways

r boxes

Fig. 7.1

Suppose there is one box. »= 1. You can put any of the # objects in it and this
can be done inn ways. Suppose there are two boxes.»=2. You can put any of the
objects in the first box and after that the second box can be fllled with any of the
remaining n —1 objects. So, by the counting principle, the two boxes can be fllled

inn (n — 1) ways. Similarly, 3 boxes can be filled inn (n —1) (n —2) ways.

In general, we have the following theorem.
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Theorem 7.2: The number of permutations ofr objects out ofn objects is
nn—1)..(n—r+l).

The number of permutations of 7 objects out of z objects is usually denoted
by "P.

Thus,
"P=n(n—1)n-2)..... m—r+1) ... (7.4)

Proof: Suppose we have to arrange r objects out of n different objects. In fact it is

equivalent to filling 7 places, each with one of the objects out of the givenn objects.

The first place can be filled in z different ways. Once this has been done, the
second place can be filled by anyone of the remaining(n — 1) objects, in(n— 1)
ways. Similarly, the third place can be filled in(n — 2) ways and so on. The last
place, the " place can be filled in[n — (r— 1)] i.e. (n — r+ 1) different ways. You
may easily see, as to why this is so. Using the Counting Principle, we get the required

number of arrangements of » out of n objectsisn(n—1)(n—-2)....(n—r+1)

4
P

Example 7.9: Evaluate (a) 4p, (b) 6p, (©) ﬁ
2

(d) 6P3 x 3P,
Solution: (a) 4Pr=4(4—1)=4 x 3=12

(b) OP3 =6(6-1)(6-2)=6 x 5 x 4=120

P, 4(4-1)(4-2) 4x3x2

© 3p 77 3G-)) 3

(d) OP3 x 3Py =6(6-1)(6-2) x 5(5-1)
=6x5 x 4 x5x 4=2400

Example 7.10 : If you have 6 New Year greeting cards and you want to send

them to 4 of your friends, in how many ways can this be done?
Solution: We have to find number of permutations of 4 objects out of 6 objects.

This number is ¥P3 = 6(6 - 1) (6 -2) (6 - 3) = 6.5.4.3 =360
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Consider the formula for ”P,, namely, n(n— 1) (n—2)....(n—r+1).
ml\l ¢ This can be obtained by removing the terms n—r,n—r—1, .... 2, 1 from the
otes

product forn!. The product of these termsis (n—r) (n—r—1) ... 2.1.1.e.,(n —r)!

n! n(n-1)(n-2).(n-r+1)(n—r)..3.2.1
Now, v _h (i—r) (n—r—-1)..32.1

nmn—-1)n-2).m—-r+1)
:nPr

So, using the factorial notation, this formula can be written as follows:

n!

(n—r)!

np, = .. (1.5)

Example 7.11: Find the value of ”*P,.

Solution: Here »=0 Usingrelation 7.5 we get

|
npy = =1
n!

Example 7.12: Show that (n+ 1) .7p, = "*1p,y,

Solution: (n+ 1)"P, =(n+1). (nl_i!r) = (n(;i)];;!
 (n+])!
- ((n+1) _ (r+1))! [writingn-ras [(n+ 1) — (r + 1)]
= n+lp,,
1.(a) () %P> (ii) Ops
4P .
(iii) # (iv) 6p5 x Sp, ) "Pu q °= °H#°Qu#=0

2

Permutations and Combinations -




| 311 Mathematics Vol-|(TSOSS) ' MATHEMATICS

(b) Verify each of the following statements:
(i) 6x °P, = °P, (ii) 4x P, = 'P,
(ii) *P, x P, = "*P, (v) P, x ‘P, = 'P,

2.(a) (1) What is the maximum possible number of 3-letterwords in English that do

not contain any vowel?

(it) Whatis the maximum possible number of 3-letterwords in English which

do not have any vowel other than 'a'?

(b) Suppose you have 2 cots and 5 bedspreads in your house. In how many

ways can you put the bedspreads on your cots?

(c) You want to send Diwali Greetings to 4 friends and you have 7 greeting

cards with you. In how many ways can you do it?
3. Show that "p,; = "p, Jx KCY],,~6=0.

4. Showthat (n—r)"P, = "Ppi1.

[ PERMUTATIONS UNDER SOME CONDITIONS

We will now see examples involving permutations with some extra conditions.

Example 7.13: Suppose 7 students are staying in a hall in a hostel and they are
allotted 7 beds. Among them, Parvin does not want a bed next to Anju because

Anju snores. Then, in how many ways can you allot the beds?
Solution: Let the beds be numbered 1 to 7.
Case 1: Suppose Anju is allotted bed number 1.

Then, Parvin cannot be allotted bed number 2.

So Parvin can be allotted a bed in 5 ways.

After alloting a bed to Parvin, the remaining 5 students can be allotted beds in

5! ways.

So, in this case the beds can be allotted in5 x 5! ways =600 ways.
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Algebra Then, Parvin cannot be allotted bed number 6
m Notes Asin Case 1, the beds can be allotted in 600 ways.
Case 3: Anju is allotted one of the beds numbered 2,3,4,5 or 6.

Parvin cannot be allotted the beds on the right hand side and left hand side
ofAnju’s bed. For example, if Anju is allotted bed number 2, beds numbered 1 or

3 cannot be allotted to Parvin.
Therefore, Parvin can be allotted a bed in 4 ways in all these cases.
After allotting a bed to Parvin, the other 5 can be allotted a bed in 5! ways.

Therefore, in each of these cases, the beds can be allotted in 4 x 5! =480

ways.
The beds can be allotted in
(2 x 600 +5 x 480) ways = (1200 + 2400) ways = 3600 ways.

Example 7.15: There are 4 books on fairy tales, 5 novels and 3 plays. In how
many ways can you arrange these so that books on fairy tales are together, novels

are together and plays are together and in the order, books on fairytales, novels and
plays.
Solution:There are 4 books on fairy tales and they have to be put together.
They can be arranged in 4! ways.
Similarly, there are 5 novels.
They can be arranged in 5! ways.
And there are 3 plays.
They can be arranged in 3! ways.

So, by the counting principle all of them together can be arranged in 4! x 5!

x 3! ways = 17280 ways.
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Example 7.16: Suppose there are 4 books on fairy tales, 5 novels and 3 plays as
in Example 7.15. They have to be arranged so that the books on fairy tales are
together, novels are together and plays are together, but we no longer require that

they should be in a specific order. In how many ways can this be done?

Solution: First, we consider the books on fairy tales, novels and plays as single

objects.
These three objects can be arranged in 3 'ways = 6 ways .
Let us fix one of these 6 arrangements.
This may give us a specific order, say, novels — fairy tales — plays.
Given this order, the books on the same subject can be arranged as follows.

The 4 books on fairy tales can be arranged among themselves in 4! =24

ways.
The 5 novels can be arranged in 5! = 120 ways.
The 3 plays can be arranged in 3! = 6 ways.

F or a given order, the books can be arranged in 24 x 120 x 6 =1 7280

ways.

Therefore, for all the 6 possible orders the books can be arranged in 6 x 17280
=103680 ways.

Example 7.17: How many ways can 4 girls and 5 boys be arranged in a row so

that all the four girls are together?
Solution: Solution: Let 4 girls be one unit and now there are 6 units in all.
They can be arranged in 6! ways.
In each of these arrangements 4 girls can be arranged in 4! ways.
Total number of arrangements in which girls are always together
=6! x 4!
=720 x 24
= 17280
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m (i) ifthe vowels are never together.
Notes

(i) ifthe vowels are to occupy only odd places.

Solution: There are 7 letters in the word ‘Bengali; of these 3 are vowels and 4

consonants.

(1) Considering vowels a, e, i as one letter, we can arrange 4+ 1 letters in 5!
ways in each of which vowels are together. These 3 vowels can be arranged

among themselves in 3 | ways.
". Total number of words=(5"!) x (3!)
=120x 6 =720.

(i) There are 4 odd places and 3 even places. 3 vowels can occupy 4 odd

places in 4P3 ways and 4 constants can be arranged in ‘P, ways.
.. Number of words = 4P3 X 4P4 =24 x 24

= 576.

e EXERCISE 7.5

1. Mr. Gupta with Ms. Gupta and their four children is travelling by train. Two
lower berths, two middle berths and 2 upper berths have been allotted to
them. Mr. Gupta has undergone a knee surgery and needs a lower berth
while Ms. Gupta wants to rest during the journey and needs an upper berth.

In how many ways can the berths be shared by the family?

2. Consider the word UNBIASED. How many words can be formed with the

letters of the word in which no two vowels are together?

3. There are 4 books on Mathematics, 5 books on English and 6 books on
Science. In how many ways can you arrange them so that books on the same

subject are together and they are arranged in the order Mathematics —

English — Science.
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4. There are 3 Physics books, 4 Chemistry books, 5 Botany books and 3
Zoology books. In how many ways can you arrange them so that the books

on the same subject are together?

5. 4 boys and 3 girls are to be seated in 7 chairs such that no two boys are

together. In how many ways can this be done?

6. Find the number of permutations of the letters of the word ‘TENDULKAR’,

in each of the following cases:
(1) beginning with T and ending with R.
(i) vowels are always together.

(i) vowels are never together.

-8 COMBINATIONS

Let us consider the example of shirts and trousers as stated in the introduc-

tion. There you have 4 sets of shirts and trousers and you want to take 2 sets with

you while going on a trip. In how many ways can you do it?

Let us denote the sets by S,, S,, S;, S, Then you can choose two pairs in

the following ways:
1. {S,,S,} 2. {S.,S,} 3.{S,,S,}
4. {S,,S,} 5. 1S, S,} 6. 1S5, S,}

[Observe that {S, S, } is the same as {S,, S, }]” So, there are 6 ways of choosing
the two sets that you want to take with you. Of course, if you had 10 pairs and you
wanted to take 7 pairs, it will be much more difficult to work out the number of

pairs in this way.

Now as you may want to know the number of ways of wearing 2 out of 4
sets for two days, say Monday and Tuesday, and the order of wearing is also

important to you. We know from section 7.3, that it can be done in *P, = 12 ways.
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Algebra sets as shown below:

mN . 1. {S,,S,} — S, onMonday and S, on Tuesday or S, on Monday and S,
otes on Tuesday

2. {S,,S;} — S,onMonday and S; on Tuesday or S; on Monday and S, on
Tuesday

3. {S,,S,} — S,onMonday and S, on Tuesday or S, on Monday and S, on
Tuesday

4. {S,,S;} — S,onMonday and S; on Tuesday or S; on Monday and S, on
Tuesday

5. {S,,S,} — S,onMonday and S, on Tuesday or S, on Monday and S, on
Tuesday

6. {S;,S,} — S;onMonday and S, on Tuesday or S, on Monday and S; on
Tuesday

. Thus, there are 12 ways of wearing 2 out of 4 pairs.
This argument holds good in general as we can see from the following theorem.

Theorem 7.3: Let 5 >1 be aninteger and » > 5. Let us denote the number of

ways of choosing r objects out ofnz objects by ”C . Then

"p
ne, = —! (7.6

r!

Proof : We can choose r objects out of n objects in "C, ways. Each of the »
objects chosen can be arranged in 7! ways. The number of ways of arranging
robjects is7!. Thus, by the counting principle, the number of ways of choosing
r objects and arranging ther objects chosen can be done in"C, ! ways. But, this

is precisely P .. In other words, we have
np, = r! NG, -(7.7)

Dividing both sides by 7!, we get the result in the theorem.

Here is an example to help you to familiarise yourself with2C;..
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Example 7.19: Evaluate each of the following:
(a) °C2 (b) °C3
6
C
(©) 43 +4c d) 55
C,
5 5
Solution: (a) °Cy = TREEE 10 (b) °C3 31 123

4 4

P P 432 4.3

() 4c3+4c) =—3=—2= + = =4+6=10
3! 21 1.2.3 1.2

6
@) °c, = Py _ 5x4
31 1x2x3

e, =22 _
1.2

°C; 20 10

‘c, 6 3
Example 7.20: Find the number of subsets of the set {1, 2, 3,4,5,6,7,8,9,
10, 11} having 4 elements.

Solution: Here the order of choosing the elements doesn’t matter and this is a

problem in combinations.

We have to find the number ofways of choosing 4 elements of this set which

has 11 elements.

By relation (7.6), this can be done in

e, - 111098 _ 120 o

1.2.3.4

Example 7.21 : 12 points lie on a circle. How many cyclic quadrilaterals can be

drawn by using these points?

Solution: For any set of 4 points we get a cyclic quadrilateral. Number of ways of
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choosing 4 points out of12 points is '>C 4 = 495. Therefore, we can draw 495

quadrilaterals.

Example 7.22: In a box, there are 5 black pens, 3 white pens and 4 red pens. In

how many ways can 2 black pens, 2 white pens and 2 red pens can be chosen?

Solution: Number of ways of choosing 2 black pens from 5 black pens

5
= °C, :izﬂzlo
21 1.2

Number of ways of choosing 2 white pens from 3 white pens

_ 3o P, 32
=3, =—2=22=
21 12

Number of ways of choosing 2 red pens from 4 red pens

4
='C, = Pk _43 6
20 1.2
. By the Counting Principle, 2 black pens, 2 white pens, and 2 red pens

canbe chosenin 10 x 3x6 =180

Example 7.23: A question paper consists of 10 questions divided into two parts
A and B. Each part contains five questions. A candidate is required to attempt six
questions in all of which at least 2 should be from part 4 and at least 2 from part B.
In how many ways can the candidate select the questions ithe can answer all ques-

tions equally well?

Solution: The candidate has to select six questions in all of which at least two
should be from Part A and two should be from PartB. He can select questions in

any of the following ways:

PartA PartB
1) 2 4
(11) 3 3
(ii1) 4 2
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If the candidate follows choice (i), the number of ways in which he candoso | MODULE -1
is 3C, x 3C,=10 x 5=50 Algebra

Ifthe candidate follows choice (ii), the number of ways in which he can do so Not @]
otes
is °C; x °C;=10 x 10=100

Similarly, if the candidate follows choice (ii1), then the number of ways in|

which he candosois °C, x °C=35 x 10=350
Therefore, the candidate can select the question in
=50+ 100 + 50 = 200 ways.

Example 7.24: committee of 5 persons is to be formed from 6 men and 4 women.

In how many ways can this be done when
(1) atleast2 women are included?
(i) atmost2 women are included?
Solution: (i) When at least 2 women are included.
The committee may consist of
3 women, 2 men: It can be done in 4C3 X 6C2 ways
or 4 women, 1 man: It can be done in 4C4 X 6C1 ways
or 2 women, 3 men: It can be done in 4C2 X 6C3 ways
Total number of ways of forming the committee
= 40500, +4C4.6C +4C,. 6C3

=6x20+4 x15+1 x6

120 +60 + 6 =186
(i) When atmost 2 women are included
The committee may consist of

2 women, 3 men: It can be done in 4C2 . 6C3 ways
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or 1 woman, 4 men: It can be done in4C4 . 6C1 ways
or 5 men: It can be done in 6C5 ways
Total number of ways of forming the committee
= 4Cy x 6C3+ 4Cy % 6Cy + OCs
=6x20+4 x 15+6
=120+6+6=186.

Example 7.25 : The Indian Cricket team consists of 16 players. It includes 2
wicket keepers and 5 bowlers. In how many ways can a cricket team of eleven

be selected if we have to select 1 wicket keeper and atleast 4 bowlers?

Solution: We are to choose 11 players including 1 wicket keeper and 4 bowlers

or, 1 wicket keeper and 5 bowlers.

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other players

= 2C,.5C, . °C,

_5 S5x4x3x2x1 y Ix8xTx6x5%x4
4x3x2x1 6x5%x4x3x2x1

Ox8x7

3Ix2x1

=2x5x% 840

Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players

= 2C1.5C5.9C5
=2x1x —9X8X7X6XS = 2x1x —9X8X7X6 =252
S5x4x3x2x1 4x3x2x1

.. Total number of ways of selecting the team

=840+ 252 =1092
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0 EXERCISE 7.6

1. (a) Evaluate (i) C, (i) “C; (iii) *C,+3C,
9
. G,
V) —
(iv) 5 .
(b) Verify each of the following statement :

(i) °C;=°C; (i) *C, x 3C, ="1Cq
(iif) 4C,+%Cy=7Cy (iv) 1°C,+ ¢, = ''C,

Find the number of subsets of the set {1, 3,5,7,9, 11, 13 .... 23} each

having 3 elements.

. There are 14 points lying on a circle. How many pentagons can be drawn

using these points?

In a fruit basket there are 5 apples, 7 plums and 11 oranges. You have to

pick 3 fruits of each type. In how many ways can you make your choice?

. A question paper consists of 12 questions divided into two parts A and B,

containing 5 and 7 questions repectively. A student is required to attempt 6
questions in all, selecting at least 2 from each part. In how many ways can a

student select a question?

Out of 5 men and 3 women, a committee of 3 persons is to be formed. In
how many ways can it be formed selecting (i) exactly 1 woman. (i1) atleast 1

woman.

. A cricket team consists of 17 players. It includes 2 wicket keepers and 4

bowlers. In how many ways can a playing eleven be selected if we have to

select 1 wicket keeper and atleast 3 bowlers?

. Tofillup 5 vacancies, 25 applications were recieved. There were 7 S.C. and

8 O.B.C. candidates among the applicants. If 2 posts were reserved for
S.C.and 1 for O.B.C. candidates, find the number of ways in which selection

could be made?
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[A:3 SOME SIMPLE PROPERTIES OF "Cr

In this section we will prove some simple properties of ”*C, which will make
the computations of these coefficients simpler. Let us go back again to Theorem

7.3. Using relation 7.7 we can rewrite the formula for 72C;-as follows:

n!
nc, = r'(n——r)' ..(7.8)

Example 7.26: Find the value of "Cy.

Solution: Here r=0, Therefore, "C,

since we have defined 0! = 1.

The formula given in Theorem 7.3 was used in the previous section. As we
will see shortly, the formula given in Equation 7.8 will be useful for proving certain

properties of 2C;..
nC, =NCh, ...(1.9)

This means just that the number of ways of choosing  objects out of z objects
is the same as the number of ways of not choosing (z — ) obj ects out of 7 obj ects.
In the example described in the introduction, it just means that the number of ways
of selecting 2 sets of dresses is the same as the number of ways of rejecting
4 —2 =2 dresses. In Example 7.20, this means that the number of ways of choosing
subsets with 4 elements is the same as the number of ways of rejecting 8 elements
since choosing a particular subset of 4 elements is equivalent to rejecting its

complement, which has 8§ elements.

Letus now prove this relation using Equation 7.8. The denominator of the
right hand side of this equation is 7/ (n — r)!. This does not change when we

replace rbyn—r.

m-r'!.[n-(m-r]!'=n-r!r!
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The numerator is independent of 7z Therefore, replacing r by n — r in Equa-

tion 7.8 we get result.

How is the relation 7.9 useful? Using this formula, we get, for example, '%°Cy
is the same as 19°C, The second value is much more easier to calculate than the

first one.

Example 7.27 : Evaluate:

(@) ', (©) '°C,
(b) 11C9 (d) 12C9
Solution: (a) Fromrelation 7.9, we have
7.6
Tcs="cr5="7Cy = 12 21

(b) Similarly 10cg =10¢ 9.9 = 10¢; = 10

11.10
(C) 11C9:11C11-9: IICZZ v=55
12.11
(d) 12¢10 =12¢1p00 = 12¢, = T2 - 66

There is another relation satisfied by ?C, which is also useful. We have the

following relation:
n=1C,q + i’l—lcr =ng, ..(7.10)
gy + n-lg, - — 27D o
(n=r)!(r-D! (m-r-lr!
(n—-1)! (n-D!

(n—r) (n—r-DHl(r-1n!

r(n—r-1)(r-1)!

|
+ —
r

~ (n—1)! 1
C (n=r=D! r=D! | n—-r
~ (n—1)! 1
 (n—r=1! (r=1!

| (n—r)r }
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n(n—1)!
(n—r)Y (n—-r-1! (r-1)!

n!
- (n—-r) r! ~ "Cr

Example 7.28 : Evaluate:

(a) 6Ca + 0y (b) 8¢, + 8cy
(a) 3C3 + 3¢y (@) 10c; + 10¢q
Solution:

(a) Letus use relation (7.10) with n="7,r=2. So, °C, +°C,="C,=21
(b) Here n=09,r=2 Therefore, *C, +8C, =°C,=36

(c) Here n= 6, r=3 Therefore, °C, +°C,=°C,=20

(d) Here n=11,r=3 Therefore, 1°C, +'1°C, =11C, =165

To understand the relation 7.10 better, let us go back to Example 7.20 In this
example let us calculate the number of subsets of the set, {1,2,3,4,5,6,7,8,9,
10, 11}. We can subdivide them into two kinds, those that contain a particular
element, say 1, and those that do not contain 1. The number of subsets of the set
having 4 elements and containing 1 is the same as the number of subsets of {2, 3,

4,5,6,7,8,9, 10, 11} having 3 elements. There are '°C, such subsets.

The number of subsets of the set having 4 elements and not containing 1 is the
same as the number of subsets of the set {2,3,4,5,6,7,8,9,10,11,} having 4 ele-
ments. This is 10C4. So, the number of subsets of {1, 2, 3,4,5,6, 7,8,9, 10, 11}
having four elements is '°C, + !°C, But, thisis ''C, as we have seen in the
example. So, '°C, +'°C,="!C, . The same argument works for the number of

r—element subsets of a set with 7 elements.
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This reletion was noticed by the French Mathematician Blaise Pascal and

was used in the so called Pascal Triangle, given below.

n=0 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1

n=>5 1 5 10 10 5 1

The first row consists of single element °C = 1. The second row consists of
1C0 and 1Cl. From the third row onwards, the rule for writing the entries is as
follows. Add consecutive elements in the previous row and write the answer between
the two entries. After exhausting all possible pairs, put the number 1 at the begining
and the end of the row. For example, the third row is got as follows. Second row
contains only two elements and they add up to 2. Now, put 1 before and after 2.
For the fourth row, wehave 1 +2=3,2+1=3.Then,weput1 +2=3,2+1=
3. Then we put 1 at the beginning and the end. Here, we are able to calculate, for
example, °C,, °C,, from?C, *C,, °C, by using the relation 7.10. The important

thing is we are able to do it using addition alone.

The numbers"C occur as coefficents in the binomial expansions, and therefore,
they are also called binomial coefficents as we will see in lesson 8. In particular, the

property 7.10 will be used in the proof of the binomial theorem.
Example 7.29: If "Cjo = "*C13 find n.
Solution: Using "C, = "'C,_, we get

n—10=12

or, n=12+10=22
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m 1. (a) Find the value of "C Is "C, , ="C ?
Notes
(b) Show that "C, ="C

0

2. Evaluate:
(@) 2Cs (b) 14cio
ORE @ 15¢cr,
3. Evaluate:
@ 7cs +7C (b) 8¢y +8cs
© 7ca +9¢, (@ 12¢3 + 12,

4. If IOCV = 10C2r+1, find the value ofr.

5 If 18C =18C  find "Cs .

PROBLEMS INVOLVING BOTH PERMUTATIONS
AND COMBINATIONS

So far, we have studied problems that involve either permutation alone or

combination alone. In this section, we will consider some examples that need both

ofthese concepts.

Example 7.30: There are 5 novels and 4 biographies. In how many ways can 4

novels and 2 biographies can be arranged on a shelf?

Solution: 4 novels can be selected out of 5 in °C, ways. 2 biographies can be
selected out of 4 in 4C, ways.

Number of ways of arranging novels and biographies

=5C, x ¥C,=5x 6=30

Permutations and Combinations -
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After selecting any 6 books (4 novels and 2 biographies) in one of the 30
ways, they can be arranged on the shelf in 6! =720 ways.

By the Counting Principle, the total number of arrangements
=30 x 720 =21600

Example 7.31: From 5 consonants and 4 vowels, how many words can be

formed using 3 consonants and 2 vowels?

Solution: From 5 consonants, 3 consonants can be selected i’'C, ways.
From 4 vowels, 2 vowels can be selected in *C, ways.
Now with every selection, number of ways of arranging 5 letters is >P..
- Total number of words =53C, x 4C, x 3P,

_ 5x4  4x3

= X
2x1 2x1

x 5!

=10 x 6 x5x4x3x2x1=7200

e EXERCISE 7.8 L

1. There are 5 Mathematics, 4 Physics and 5 Chemistry books. In how many

ways can you arrange 4 Mathematics, 3 Physics and 4 Chemistry books.

(a) ifthe books on the same subjects are arranged together, but the order in

which the books are arranged within a subject doesn’t matter?

(b) ifbooks on the same subjects are arranged together and the order in which

books are arranged within subject matters?

2. There are 9 consonants and 5 vowels. How many words of7letters can be

formed using 4 consonents and 3 vowels?
3. Inhow many ways can you invite at least one of your six friends to a dinner?

4. Inanexamination, an examinee is required to pass in four different subjects.

In how many ways can he fail?
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[g:B CIRCULAR PERMUTATIONS

In general, a combination is only a selection permutation involves both

selection and arrangement.

7.9.1 Definition: From a set of elements choosing some or all of them are arranging

them around a circle is called a "circular permutation".

n

7.9.2 Circular permutations of »n dissimilar things"#" at a time is Pr

r

7.9.3 The number of circular permutations of "n" dissimilar things taken all ata time

is |(n—1) ways.

A
C B
Clock-wise anti-clock-wise
Fig. 7.1 Fig. 7.2

Observe circular permutations ABC, ACB. In the first permutation A, B, C
are in clock-wise, and in second A, B, C are in anti-clock-wise directions. If we
consider the direction (wether it is clock-wise or anti-clock - wise) the permutation
is [(n—1) ways.

7.9.4 If we do not consider the direction then the permutations is

% (n—-1).
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7.9.5 From a set of distinct elements taking some or all the ele-

ments and arranging them linearly is called a linear permutation.

Imp Note: Linear permutation has a first place and also a last place. Where as a
circular permutation has no starting place and no last place in particular. It can be
treated as starting from any one of the elements in it. But how the other elements

are arranged relative to this starting elements is to be taken into consideration.
7.9.6 Choosing method from A, B,C,D
Linear Method

(1) selecting 2 things from4 things. (ii) Selecting 2 things from 4 things and

their arrangements
Combinations Permutations
a) The number of combinations of 2 a) The number of permutations of
elements selected from 4 elements 2 elements from four elements
4C, = % = 6 ways 4P, =4.3 =12 ways
AB AB, BA
AC AC, CA
AD AD, DA
BC BC,CB
BD BD, DB
CD CD, DC

(b) (i) No ofcombinations of 3 elements from (ii) No. of permutations of 3
elements from

4 elements 4 elements

MODULE -|
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Algebra 4C, = 4C, = dways 4P, = 4.3.2 =24 ways
mNotes (-nC, =nC,_)
ABC ABC
ABD ACB
ACD BCA
BCD BAC
BD CAB
CD BCD CBA
BDC
CDB
CBD
DBC
DCB
4 x 6 =24 ways
(¢) No.of combinations of 4 elements (c) No.of permutations of 4 things
taken all at a time taken 4 at a time
Combinations Permutations
4C,=4C, = lways 4P, =4.3.2.1 = 24 ways
ABCD
D ABC
D ACB
D BCA
D BAC
D CAB
D CBA
Similarly we get 4 x 6 =24 ways
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7.9.7 "P. = n(n—-1)(n—2)..(n—r+1) MODULE -1
) |n Algebra

P, = = @]
Notes

"p, = n("_1 Py (1£r<n)

Example 7.32: Find the number of ways that 9 boys and 9 girls can set on a round

(circlulary) table ?
Sol: Total No.of boys and girls=18
No.of permutations of sitting circularly in [18 —1 = |17 ways.

Example 2: Find the number of ways that 8 charis can be placed beside a round
table ? In how many ways can two chairs of specified colors can be placed side by

side ?

Sol: First we should treat that two chairs of specified colors as one unit. So now

the total no.of chairs 6 + 1 = 7 (8 — 1) can be arranged circularly in
(7-1) = [6.ways.

Two specified coloured chairs can be arranged in |2 ways.
. The no.of circular permitations is = [6 X |_2
=6.5.4.3.2.1x2.1
= 1440ways.
Example 7.32: In how many ways can 6 students sit on a sound table ?
Sol: In number of permutations of sitting is |6 —1 =[5 =120 ways.

If the clock - wise and anti-clockwise directions are not considered, the

120

number pf permutations is - - 60. ways.
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Example 7.33: In how many ways can a gasland be made with different colors of
9 pearls ?

Sol: The arrangements of pearls

- %:%:%:1008

Example 7.34: Find the number of ways of arranging 7 men and 5 women around

a circular table. In how many of them (i) no two women come cansit together.
Sol: (i) no two women can sit (come) together
First we arrange 7 men around the circular table in|7 —1 = |6 ways.
There are 7 places in between them to sit 5 women.

Now we can arrange the 5 women in these 7 places in 7P, ways. Thus, the
no.of circular permutations in which no two women (come) can sit together is

|6 x TP, ways.

(i1) Treat the 5 women as single unit. Then we have 7 men + 1 unit of woment =

& entities.

They can be arranged around a circular table in|8§ —1 = |7 ways. Now the

5 women among themselves can be arranged in |5 ways.
Hence, the required number of arrangements is 5.7 ways.

Example 7.35: Find the number of ways that a garland is made with 14 flowers

should be side by side in the garland.

Sol: First we should treat that two specified flowers as one. So now the tatall 3

(14 — 1)flowers can be arranged circularly in |13 ways.
The two specified flowers can be arranged in|2 = 2ways.

.. from the given condition, 14 flowers can be arranged as a garland in

2 x |13 ways.
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But, when preparing a garland, we should not consider the direction. So the

2x]|13
2

flowers in a garland can be arranged in ways = |13 ways.

Example 7.36 : Find the number of ways that 6 boys and 6 girls can sit circularly
such that a boy should sit between two girls.
Sol: 6 girls canssit circularly in [6—1 = |5 = 120 ways.

As shown in the figure 6 boys can sit in 6 vacant places between 6 girls.

After the girls are made to sit.

G,

G G,
G G
G4
Fig7.3

we should consider in which place should the first boy sit. If we consider 6

boys should sit in a row, they can sit in 6 vacancies in6 = 720ways.
Therefore 6 boys and 6 girls can sit circularly with the given condition in

120 x 720 =26,400 ways.

Permutations & Combinations

o Ifp,,p,,....p; aredistinct primes anda.;, ,, .... 0 are positive integers.

Then the number of positive divisors of n= ptpy? e P s (o, +1)

(0, + 1) ... (o + 1) (This includes 1 and n)
Example 8 : Find the number of positive divisors of 1080.

Solution: 1080 =23 x 33 x 5!
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MODULE -1 .. The number of positive divisors of 1080=(3+1)(3+1)(1+1)
Algebra — 3

m Notes e Thesum ofall - digit numbers that can be formed using the given 'n' non-
zerodigits(1<r<n <9)is (n=1) Py % sumofthe givendigits x 111..1

(r times).

Example 9: Find the sum of all 4-digit numbers that can be formed using the digits
1,3,5,7,9.
Solution: r=4
n=>5
— (-1 Py % sumofthe given digit x 1111
- (5‘1)p(4_]) x(1+3+5+7+9)x1111
= 4p3x25x1111

= 24 x 25 x 1111 = 6,66,600.

e EXERCISE 7.9 |

1. 5boysand 3 girls around a circular table. In how many of them
(1) no two girls can sit together
(i) all the girls can sit together
(1) all the girls cannot sit together.

Find the number of ways of arrangements.

2. Find the number of ways of seating 5 Japanees, 5 Indians at a round table so

that no two persons of same country sit together.
3. Find the number of circular permutations of 8 things taken 5 things ?

4. Inhow many ways can a garland be made with 8 flowers such that 2 specified

flowers should be present side by side in the garland ?

5. Inhow many ways can a necklace be made with different colours of beads.
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KEY WORDS

e Fundamental principle of counting states.

If there are n events and if the first event can occur i, ways, the second
event can occur inm, ways after the first event has occurred, the third event
can occur inm, ways after the second event has occurred and so on, then all
the n events can occur in

m, X m, X m;, X ... X m,_ X m, ways.

e The number of permutations of #n objects taken all at a time isn!

!
[ ] nPr = =
(n—r)!
o "P =n!
!
e The number of ways of selecting 7 objects out of n objects "C = = o
"ol (n-r)!

n —n
o "C ="C

n—1 n—1 —n
e "IC +mIC_ =nC,

e Thenumber of circular permutations of n dissimilar things is [n —1

e Incase of hanging type circular permuataions like garlands of flowers, chains

1
of beds etc., the number of circular permutations of# things is 5 ln= l.

SUPPORTIVE WEB SITES

http : // www.wikipedia.org

http://mathworld.wolfram.com

PRACTICE EXERCISE

1. There are 8 true - false questions in an examination. How many responses

are possible?

. Permutations and Combinations
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14.

10.

I1.

12.

13.

The six faces of a die are numbered 1,2,3,4,5 and 6. Two such dice are

thrown simultaneously. In how many ways can they tum up?

A restaurant has 3 vegetables, 2 salads and 2 types of bread. If a customer

wants 1 vegetable, 1 salad and 1 bread, how many choices does he have?

Suppose you want to paper your walls. Wall papers are available in 4 diffrent
backgrounds colours with 7 different designs of 5 different colours on them.

In how many ways can you select your wall paper?
In how many ways can 7 students be seated in a row on 7 seats?

Determine the number of 8 letter words that can be formed from the letters
of the word ALTRUISM.

If you have 5 windows and 8 curtains in your house, in how many ways can

you put the curtains on the windows?

Determine the maximum number of 3-letter words that can be formed from

the letters of the word POLICY.

There are 10 athletes participating in a race and there are three prizes, 1,

nd and 3" to be awarded. In how many ways can these be awarded?

In how many ways can you arrange the letters of the wordd TTAIN so that

the 75 are together?

A group of 12 friends meet at a party. Each person shake hands once with all

others. How many hand shakes will be there ?

Suppose that you own a shop which sells televisions. You are selling 5 different
kinds of television sets, but your show case has enough space for display of3
televison sets only. In how many ways can you select the television sets for

the display?

A contractor needs 4 carpenters. Five equally qualified carpenters apply for

the job. In how many ways can the contractor make the selection?

In how many ways can a committe of 9 can be selected from a group of 13?
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15. In how many ways can a committee of 3 men and 2 women be selected | MODULE - |

from a group of 15 men and 12 women? Algebra

16 In how ways can 6 persons be selected from 4 grade 1 and 7 grade 11 @]
officers, so as to include at least two officers from each category ? Notes

17. Outof 6 boys and 4 girls, a committee of 5 has to be formed. In how many
ways can this be done if we take:

(a) 2 girls.
(b) atleast 2 girls.

18. The English alphabet has 5 vowels and 21 consonants. What is the maximum
number of words, that can be formed from the alphabet with 2 different
vowels and 2 different consonants?

19. From 5 consonants and 5 vowels, how many words can be formed using 3
consonants and 2 vowels?

20. Inaschool annual day function a variety programme was organised. !twas
planned that there would be 3 short plays, 6 recitals and 4 dance programmes.
However, the chief guest invited for the function took much longer time than
expected to fmish his speech. To finish in time, it was decided that only 2
short plays, 4 recitals and 3 dance programmes would be perfomed, How
many choices were available to them?

(a) ifthe programmes can be perfomed in any order?
(b) ifthe programmes of the same kind were perfomed at a stretch?

(c) if the programmes of the same kind were perfomed at a strech and
considering the order of performance of the programmes of the same

kind?
EXERCISE 7.1

1. (a) 180 (b) 8 (c) 12 (d) 20
2. (a) 48 (b) 36
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EXERCISE 7.2

1. (a) 17576
3. (a) 24

EXERCISE 7.3

l.(a) () 720
(iv) 17280
(b) (1) False
2.(a) 120

EXERCISE 7.4

1. (a)() 12

(v) n!

(b)(1) False
(iv) False

2. (a)(i) 7980
(b) 20

EXERCISE 7.5

1. 96
4. 2488320
5. 144

6. (i) 5040

EXERCISE 7.6

1. (a)(i) 286

(b) (1) True

(b) 900 2.
(b) 24

(i) 5040
(v) 10
(i) False

(b) 40320

(i1) True

(ii) 9240
(c) 840

2. 1152

(ii) 30240

(i) 126

(i1) False

| 311 Mathematics Vol-(TSOSS) |

(a) 105 (b) 60

(i) 5046

(@) True

(c)24

(iv) False

(iif) 4 (iv) 7200

(ii1) False

3. 2073600

(i) 332640

21
(111) 84 (1v) 5

(iii) False (iv) True
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2. 1771 3. 2002
5. 805

6. (i) 30 (ii) 46
7. 3564 8. 7560

EXERCISE 7.7

1. (a)n, No
2. (a)126 (b) 1001
3. (a) 56 (b) 126
4. 3
5. 56

EXERCISE 7.8

1. (a)600 (b) 207 3600

4. 15
EXERCISE 7.9
1. (i) |4.|5P; =1440
(i) [3. |5 =720
(iii) |[7- |3 . |5 =4320
2. 19 |45 =2880

3. 8% =1344

4. 720
8
5.5

4. 57750

() 715

(c) 120

2. 6350400

(d) 455
(d) 286

3.

63
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Algebra
1. 256 2. 36 3. 12 4. 140
mNotes
5. 5040 6. 40320 7. 6720 8. 120
9. 720 10. 120 11. 66 12. 10
13. 5 14. 715 15. 30030 16. 371
17. (a) 120 (b) 186
18. 50400
19. 12000
20. (a) 65318400 (b) 1080 (c) 311040
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Chapter

BINOMIAL THEOREM

LEARNING OUTCOMES

After studying this lesson, you will be able to:

e state the binomial theorem for a positive integral index and prove it using

the principle of mathematical induction;

e write the binomial expansion for expressions like (x + y)" for different

values of x and y using binomial theorem;
e write the general term and middle term (s) of a binomial expansion;
e write the binomial expansion for negative as well as for rational indices;

e apply the binomial expansion for fmding approximate values of numbers

like %/5, \/5, 3/5 etc; and

e app ly the binomial expansion to evaluate algebraic expressions like

7
5
(3 - ;j where x is so small that x?, and higher powers of x can be

neglected.

. Binomial Theorem 303
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Algebra

e Number System
mNotes

e Four fundamental operations on numbers and expressions.

e Algebraic expressions and their simplifications.

e Indices and exponents.

INTRODUCTION

Binomial means two terms connected by either

'+' or '—'. We have come across many expansions of Squares, Cubes etc.

of a binomial in earlier classes. For example,

(x+y)1:x1+y1:x+y
(x-p)=x'=y=x-y
(x+y)2 :xZ+2xy+y2
(x=y)* =x"=2xp+y°
(x+y)3 :x3+3x2y+3xyz+y3
(x—y)3 =x3—3xzy+3xy2—y3

(x+y)4 :x4+4x3y+6x2y2+4xy3+y4

Each of these is an expansion of a power of the sum or difference of two
terms. These are called binomial expansions. The coefficients 1, 1 in the
expansion of (x+ )", 1, 2, 1 in the expansion of (x+y)*, 1,3, 3, 1 in
(x+)’,1,4,6,4,1in (x+y)* etc. are called binomial coefficients. From
the above examples we observe that the coefficients in these expansions are

as follows.

Binomial Theorem Jil
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51

From the above diagram we observe the following pattern of obtaining

a row from the previous row from the second row onwards

(1)  Each row begins and ends with 1 (one)
(i) The n" row has (n+1) terms for any ne Z*.
(1)  The other numbers (except the first and last) in a row are obtained by adding
the two numbers in the previous row on either side of it. This addition is shown
by means of the triangle in each row as follows
a V b
a+b

The diagram in Fig. 8.1 is called Pascal triangle which is named after
its inventor, a French mathematicianBlaise Pascal (1623-1662). But this was
mentioned in a different form under a different name Meru-Prastara by the

renowned Indian scientist Pingala in his book Chanda Shastra as early as
200 B.C.

The expansion of (x+ )" using multiplication, as shown at the begin-
ning, becomes difficult as n increases. In this chapter, we derive the expan-
sion of (x+»)" when n is a positive integer. This result is known as the
Binomial Theorem. The coefficients of the terms x' yj are called Binomial
Coefficients. We study the properties of these binomial coefficients, give

methods to find the middle term(s) and the numerically greatest term(s) in a

binomial expansion. Also we outline (without Proof) the binomial theorem for
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the expansion of (x+a)” when n is a negative integer or any fraction. We
find the coefficient of a particular index (power) of x in the expansion of
(x+a)" (when = is an integer or a rational number). Finally, we find the

approximate values of some irrational numbers using the binomial expansions.

N WHAT IS A STATEMENT ?

In your daily interactions, you must have made several assertions in the

form of sentences. Of these assertions, the ones that are either true or false

are called statement or propositions.
For instance,

“I am 20 years old” and “If x = 3, then x> = 9” are statements, but

‘When will you leave?’” And ‘How wonderful!” are not statements.

Notice that a statement has to be a definite assertion which can be true
or false, but not both. F or example, x — 5 =7’ is not a statement, because
we don’t know what x, is. If x = 12, it is true, but if x = 5, ‘it is not true.

Therefore, x —5 =7’ is not accepted by mathematicians as a statement.

Butboth'x -5=7 = x=12"' and x — 5 = 7 for any real number

x' are statements, the first one true and the second one false.
Example 8.1: Which of the following sentences is a statement?

(i) India has never had a woman President.

(i) 5 is an even number.

@) x" > 1

(iv) (a + b)*> = a*> + b*> + 2ab.
Solution: (i) and (i1) are statements, (i) being true and (i) being false. (iii) is
not a statement, since we can not determine whether it is true or false, unless

we know the range of values that x andy can take.

Now look at (iv). At first glance, you may say that it is not a statement, for
the very same reasons that (iii) is not. But look at (iv) carefully. It is true for
any value of @ and b. It is an identity. Therefore, in this case, even though we

have not specified the range of values for a and b, (iv) is a statement.
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Some statements, like the one given below are about natural numbers in MODULE - 1|

general. Let us look at the statement given below:

n(n+1)
2

l1+2+...+n=

This involves a general natural numbem. Let us call this statement P¢)
[P stands for proposition].
1(1+1)
2
Similarly, P (2) would be the statement

2(2+1)

Then P(1) would be 1=

1+2= and so on.

Let us look at some examples to help you get used to this notation.

Example 8.2: If P(n) denotes 2” > n — 1, write P(1), P(k) and P(k + 1),
where k € N.

Solution: Replacing n by 1, k and k£ + 1, respectively in P(n), we get
P(1):2'>2-1 1ie 2>1
P(k) : K> > k-1
P(k+1) : 2" 1> (k+1) -1 e 2HI >k

Example 8.3: If P(n) is the statement 1 +4 +7 + ... + B3n - 2) =
n(3n—-1)
2
Solution : To write P(1), the terms on the left hand side (LHS) of P(n)

continue till 3 x 1 —2., 1. So, P (1) will have only one term in its LHS, i.e.,

write P(1), P(k) and P(k +1).

the first term.

) Ix(3x1-1)
Also, the nght hand side (RHS) of P(1) = # =1
Therefore, P(1) =1
Replacing n by 2, we get
2x(3x2-1)
PQ)=1+4= """ e, 55

. Binomial Theorem
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MODULE - 1| Replacing n by k and k + 1, respectively, we get
kQ3k -1
Algebra P =1+4+7+ .+ (k=2 = %
mmtes Pht1) = 1 + 4+ 7 + ... + B3k — 2) + [3(k+1) — 2]
_(k+1) [3(k+1) - 1]
2
_ Bk+2)
ie, 1+4+7+..+@Ck+1)=k+1) 5

" EXERCISE 8.1

1. Determine which of the following are statements:
(a 1+2+4+..+2">20
b) 1+2+3+..4+10=99
(c) Chennai is much nicer than Mumbai

(d) Where is Timbuktu ?

1 _n
n(n+l) n+l

1
+ ...+
© 1x2

2. Given that P(n): 61is a factor of n’+ 5n, write P(1), P(2), P(k) and

P(k + 1) where k is a natural number.
3. Write P(1), P(k) and P(k+1), if P(n) is

(a) 2">n+1

®d) 1+x)">1+nx

(¢c) n(n+1) (n+2)is divisible by 6.

(d) (" -y is divisible by (x — ).
(e) (ab)" = a" b

3 7n
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4. Write P(1), P(2), P(k) and p(k+1), if P(n) is:
- 1 _n
a) 1x2 77 n(n+l) n+l

b) 1+3+5+....+2n-1)=n?
) (Ix D+2 x 3+ ...+nn+1)<nmn+ 1)>

1 1 1 n

— + + -
D %3 7 3x5 Qn—1)2n+1)  2n+1

Now ,when you are given a statement like the ones given in Examples
2 and 3, how would you check whether it is true or false? One effective method

1s mathematical induction, which we shall now discuss.

-3 THE PRINCIPLE OF MATHEMATICAL INDUCTION

In your daily life, you must be using various kinds of reasoning depending

on the situation you are faced with. For instance, if you are told that your

friendjust had a child, you would know that it is either a girl or a boy. In this

case, you would be applying general principles to a particular case. This form|

of reasoning is an example of deductive logic.

Now let us consider another situation. When you look around, you find
students who study regularly, do well in examinations, you may formulate the
general rule (rightly or wrongly) that “anyone who studies regularly will do well
in examinations”. ill this case, you would be formulating a general principle (or
rule) based on several particular instances. Such reasoning is inductive, a process
of reasoning by which general rules are discovered by the observation and
consideration of several individual cases. Such reasoning is used in all the sciences,

as well as in Mathematics.

Mathematical induction is a more precise form of this process. This precision
is required because a statement is accepted to be true mathematically only if
it can be shown to be true for each and every case that it refers to. The following

principle allows us to check if this happens.

MODULE - |
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The Principle of Mathematical Induction:

Let P( n) be a statement involving a natural number n. If
(1) it is true for n =1, i.e., P(1) is true; and

(i) assuming k& > 1 and P(k) to be true, it can be proved that P(k +

1) is true; then P(n) must be true for every natural number 7.

Note : that condition (ii) above does not say that P(k) is true. It says that
whenever P(K) is true, then P( k + 1) is true.

Let us see, for example, how the principle of mathematical induction allows

us to conclude that P(n) is true for n = 11.

By (1) P(1) is true. As P(1) is true, we can put k=1 in (ii), So P(1 +
1), i.e., P(2) is true. As P(2) is true, we can put k = 2 in (ii) and conclude
that P(2 + 1), i.e., P(3) is true. Now put £ = 3 in (ii), so we get that P(4)
is true. It is now clear that if we continue like this, we shall get that P(11) is

true.

It is also clear that in the above argument, 11 does not play any special
role. We can prove that P(137) is true in the same way. Indeed, it is clear
that P(n) is true for all n > 1.

Let us now see, through examples, how we can apply the principle of
mathematical induction to Algebra prove various types of mathematical state-

ments.

Example 8.4 : Prove that
n(n+1)

1+2+3+....+n= ) where n is a natural number.
Solution: We have
n(n+1)
Pn)y:1+2+...+n= )
) Ix(1+1) o
Therefore, P(1)is 1 = Yy which is true.

Therefore, P(1) is true.

Let us now see, if P(k + 1) is true whenever P(k) is true.

Binomial Theorem Jil
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Let us, therefore, assume that P(k) is true, i.e.,
k .
1+2+...+K=5(k+1) (D)

(k+1)(k+2)

Now Pk+1):1+2+ . k+(k+1)= )
If will be true, if we can show that LHS = RHS.

The LHS of P(k+ 1)=(1 +2+3+ ...+ k) + (k+ 1)

= % (k+ 1)+ (k+ 1) (From())

e
=(k+1) >
= (%) (k+2)

= RHS of P(k+1)
So, P(k+1) is true, if we assume that P(k) is true.

Since P(1) is also true, both the conditions of the principle of math-
ematical induction are fulfilled, we conclude that the given statement is true for

every natural number 7.

As you can see, we have proved the result in three steps - the basic
step [i.e., checking (i)], the Induction step [i.c., checking (ii)], and hence

arriving at the end result.
Example 8.5 : Prove that
12+2224+322+42%+ .. +n2'=m—-1).2" + 2,
where 7 is a natural number.
Solution: Here P(n) : 1.2' +222+323+ .. +n2"=(n-1).2"1 +2
Therefore, P(1)is 1.2' = (1-1)2""1 +2, ie., 2=2.
So, P(1) is true.
We assume that P(k) is true, i.e., .

12V +222 4323+ .+ k2F=(k—-1) 21 + 2 .. (1)
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Now will prove that P(k + 1) is true.

Now P(k + 1) is

12042224323+ .+ k2F+ (k+ 128 =[(k+ 1) = 112%1FD + 2

= k22 + 2

LHS of P(k+1) = (1.2'+ 222+ 323 + ... + k2F+ (k+ 1)2K]
=2k - 1)+ (k+1)] +2
=21 (2k) + 2 [Using (1)]
= k2K2 + 2
= RHS of Pk + 1)

Therefore, P(k + 1) is true.

Hence, by the principle of mathematical induction, the given statement is

true for every natural number 7.

Example 8.6: For ever natural number n, prove that (x*"~! + y?*1) is di-

visible by (x + y) where x, y € N.

Solution : Let us see if we can apply the principle of induction here. Let us

call P(n) the statement (x*"~! + y?"~1) is divisible by (x + ).

Then P(1):'(x>"' + y* 1) is divisible by (x +y)' i.e., ‘(x +y) is
divisible by (x + y)' which is true.

Therefore, P(1) is true.

Let us now assume that P(k) is true for some natural number £, i.e.,

(x*1 4+ 321y s divisible by (x + ).
This means that for some natural number ¢, x2# 1+~ 1=(x + y)¢
Then x*1 = (x + y)t — y*!

We wish to prove that P(k + 1) is true, i.e., [x2*¢"D-1 4 320D-17] jg

divisible by (x + y) is true.

G 2 ] Binomial Theorem Jll
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Now,
x2(k+1)—1 + y2(+1)—1) — x2k+1 + y2k+1
— x2k—1+2 + y2k+1

— x2 x2k—1 + y2k+1

= x*[(x+ y)t — y* 17+ 1 [From(1)]
— x2 (x + y)l‘ _ x2 ka—l 4 y2k+1

— X2 (x+ )t — a2 Pl 4 g2 2

= X+ -y -7
= (x+y) [P - (x - p) ]
which is divisible by of (x + y).
Thus, P(k+ 1) is true.
Hence, by the principle of mathematical induction, the given statement is
true for every natural number 7.
Example 8.7 : Prove that 2" > n for every natural number n.
Solution: We have P(n) : 2" > n.
Therefore,  P(1): 2! > 1 i.e 2> 1, which is true.
We assume P(k) to be true, that is,
2k > k .. (1)
We wish to prove that P(k + 1) is true, i.e. 2471 > k + 1.
Now, multiplying both sides of (i) by 2, we get
2.2k > 2k
= 2Kl> [+ 1, since k> 1
Therefore, P(k + 1) is true.

Hence, by the principle of mathematical induction, the given statement is

true for every natural number 7.
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MODULE - | Sometimes, we need to prove a statement for all natural numbers greater

Algebra than a particular natural number, say a (as in Example 8.8 below). In such a
m situation, we replace P(l) by P(a + 1) in the statement of the principle.
Notes

Example 8.8 : Prove that
n>>2(n+ 1) for all n >3, where n is a natural number.
Solution : For all n> 3, let us call the following statement
P(n) : n*>>2(n+ 1),

Since we have to prove the given statement for n > 3, the first relevant

statement is P(3). We, therefore, see whether P(3) is true.
P(3) : 32> 2 x4, ie, 9>8.
So, P(3) is true.
Let us assume that P(k) is true, where k > 3, that is
k> > 2(k + 1) (1)
We wish to prove that P(k + 1) is true.
Pk+1):(k+1)>2k+2)
LHS of P(k+1) =(k+ 1)
=k +2k+ 1
> 2k +1)+2k+1 [ By ()]
>3+ 2k+ 1, since 2(k + 1) > 3.
=2 (k+2)
Thus (k + 1)> > 2(k + 2).
Therefore, P(k+1) is true.

Hence, by the principle of mathematical induction, the given statement is

true for every natural number n > 3.

Binomial Theorem Jil




| 311 Mathematics Vol-|(TSOSS) ' MATHEMATICS

Example 8.9 : Using principle of mathematical induction, prove that

o on Tn
+ PR
5 3 15

j is a natural number for all natural numbers .

5 3
7
Solution: Let P(n) : n? + Ty %be a natural number.

3
11 7).
P(1):| — + — + — | I1s a natural number.
5 3 15
or, 1 + 1,7 = 3547 = 15 =1, which is a natural number.
5 3 15 15 1
P(1) is true.
ook Tk
Let P(k) : [? + 3 + EJ is a natural number be true ...(1)
1 5 3
Now (k+1) N (k+1) N T(k+1)
5 3 15
= % [5° +5k* + 10k> + 10k + 5k +1] + % [k +3k* + 3k +1]
+ lk+l)
15 15
— k_5+k_3+ﬁ +k4+2k3+3k2+2k+ l+l+l
R R AR
ok Tk
= |-+ +— |+ + 28+ 3+ 20+ 1 ()
5 3 15
ok
By (i), — +— + — is a natural number.
5 3 15

also k*+ 2k3 + 3k* + 2k is a natural number and 1 is also a natural

number.
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(i1)) being sum of natural numbers is a natural number.
- P(k+ 1) is true, whenever P(k) is true.

. P(n) is true for all natural numbers n.

5 3
n n n
Hence, (? + ? + E}is a natural number for all natural numbers#.

" EXERCISE 8.2 .

1. Using the principle of mathematical induction, prove that the following

statements hold for any natural number »n:
n
(a)12+22+32+....+n2=g m+1Q2n+1)

G PB+22+33+ . +nd= (1+2+ .+ n)

©1+3+5+..+@=0+2+..+n)
@ 1+4+7+..+0Bn=2)= §(3n—l)

2. Using principle of mathematical induction, prove the following equalities

for any natural number n:

(@) + + ot 1 ==
Ix2  2x3 n(n+l) n+l
1 1 n
(b) — t+t——+ -+ ...t =
1.3 35 57 (n-1) 2n+1) 2n+1
n(n+1)(n+2)

(c) (1x2) + (2x3) +...+ n(n+1) .

3. For every natural number n, prove that
(a) n3+ 5n, is divisible by 6
(b) (x" — 1), is divisible by (x — 1)
(c) n® + 2n, is divisible by 3
(d) 4 divides (n* + 2n3 + n?).
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4. Prove the following inequalities for any natural numbem: MODULE - 1|

(@ 3" >2n+1 (b) 4% > 15n Algebra

1 #9
- 2
(C)l+2+...+n<8(2n+1) Notes

5. Prove the following statements using induction:

(a) 2" >n?% n>N where n is any natural number.

1 1 I 13

+ ot —>—
(b) il aio o 24 for any natural number n greater

than 1.

6. Prove that n(n* — 1)is divisible by 3 for every natural number n greater
than 1.

To prove that a statement P( n) is true for every n € N, both the basic

as well as the induction steps must hold.

If even one of these conditions does not hold, then the proof is invalid.
For instance, if P(n) is (a + b)" <a" + b" for all reals a and b, then
P(1) is certainly true. But, P(k) being true does not imply the truth of
P (k+1). So, the statement is not true for every natural numbern. (For
instance, (2 +3)222 2 32%) .

As another example, take P(n) to be P(n) : n > g + 20.

In this case, P(1) is not true. But the induction step is true. Since P(k)

being true.

k
= k>5 + 20

= k+1 >E+20+1>E+20+l:ﬂ+20
2 2 2 )

= P(k+ 1) is true.

Or if we want a statement which is false for all n, then take P( n) to be

n> 1 400
2

And, as you can see, P( n) is false for large values of n say n = 100.
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([oDIVIRNRRE: 3B THE BINOMIAL THEOREM FOR A NATURAL
Algebra EXPONENT

mNOteS You must have multiplied a binomial by itself, or by another binomial. Let
us use this knowledge to do some expansions. Consider the binomial (¢ + y).
Now,

(x+5) = x+y

@ty =@ty (xt+y) =x2+ 2y +)°

(c+3) = +y) (c+3)?=x+ 3% + 32 + 73

=Gty TP =xt Ay +6x7 )7+ dx 4yt

(x +3)° = (x+p) ()" = 27+ 5xfy + 10272 + 10x7 p* + Sy + 2

and so on.

In each of the equations above, the right hand side is called the binomial

expansion of the left hand side.

Note that in each of the above expansions, we have written the power
of a binomial in the expanded form in such a way that the terms are in descending
powers of the first term of the binomial (which is x in the above examples).

If you look closely at these expansions, you would also observe the following:

1. The number of terms in the expansion is one more than the exponent of
the binomial. For example, in the expansion of (x + y)*, the number of

terms is 5.

2. The exponent of x in the first term is the same as the exponent of the
binomial, and the exponent decreases by 1 in each successive term of

the expansion.

3. The exponent of y in the first tenn is zero (as y°= 1). The exponent
of y in the second term is 1, and it increases by 1 in each successive

term till it becomes the exponent of the binomial in the last term of the

expansion.
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4. The sum of the exponents of x and y in each term is equal to the exponent
of the binomial. For example, in the expansion of ( x + y)°, the sum of

the exponents of x andy in each term is 5.
If we use the combinatorial co-efficients, we can write the expansion as
(x + )} =3C, 2% +3C, x2 y +3C, 02 +3C, )3
(x + )t =4C, x4+ 4C, X3y +4C, XA + 4C, x )3 + 4C,
(X + )5 = 5Cy x5 +5C, x*y + 5C, 32 +5C, x5 +5C, x y4 +5C )
and so on.

More generally, we can write the binomial expansion of £ + y)”, where
n is a positive integer, as given in the following theorem. This statement
is called the binomial theorem for a natural (or positive integral)

exponent.
Theorem 8.1

(x + y)n — ncoxn+ncl xn—4y1 +nC2xn—3y2+ . +ncn_ xyn—l + ncn yn (A)

3
where n € N and x, y €R.

Proof: Let us try to prove this theorem, using the principle of mathematical

induction.
Let statement (A) be denoted by P(n), i.e.,
P(n) : (x + y)"="Cyx" + "C, X"yl +7C, x"22 +  +1C _ xym!
+"C, )" ..(1)
Let us examine whether P(1 ) is true or not.
From (i), we have
P(): x+ = 1Cox+!C,y=1xx+xp
ie, (x+yl=x+y

Thus, P(1) holds.
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MODULE - | Now, let us assume that P(k) is true, i.e.,

Algebra P(k) : (x +y)f = kCyxF +*C, x*1 y +FC, X2 )% + L.

k f— k i ..
mNotes +AC,  x yF+ACy ..(i1)

AssumingthatP(k) is true, if we prove that P(k + 1) is true, thenP(n)
holds, for all n. Now,

(c+ )=+ y) (& + p)f
= (x +y) (*Cy x* ++C, X1 y + 5C, X2 2 + ..
+hC, | x T+ kC, Wb
= KXk 4 KC, xhy +5C Xy 4 EC, X 2 4RO 2 +
e HRC,_ X2 Y+ RC | xyF+ EC xyk 4 RC, i
ie., (x+ ) =kC xM1 + (kC) + *¥C)) x*y + (*C, +5C,) x¥1 )% +
e B (FC,_ HAC )yt + KC M L)
From Lesson 7, you know that *C,=1=*1C, (i)
and K, = 1=+,
Also kC +HkC_, = FiC,

Therefore, kc, + *kC, = *IC, (V)

kC1 4 kCZ k+lC

2
kC2 + kc3 — k+1c
.......................... and so on

Using (iv) and (v) we can write (iii) as

(x + y)k+1 = k+1CO Xkt 4 k“Clxky + k+1C2 k-1 y2 +
¥ k+1Ck Xk + k+1ck+1 s

which shows that P(k+1) is true.

Thus, we have shown that (a)P(1) is true, and (b) if P(k) is true, then
P(k+ 1) is also true.
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Therefore, by the principle of mathematical induction, P(n) holds for any

value of n. So, we have proved the binomial theorem for any natural exponent.

This result is supported to have been proved first by the famous Arab

poet Omar Khayyam, though no one has been able to trace his proof so far.
We will now take some examples to illustrate the theorem.
Example 8.10 : Write the binomial expansion of (x + 3y)°.

Solution: Here the first term in the binomial is X and the second term is 3.

Using the binomial theorem, we have
(x +3y)° =5C, x* +°C, x* By)' + °C, x* (3y)* + °C, x* (3y)
+3C, x(3y)* +°C5 3y’
=1 x x>+ 5x* x 3y +10x3 x (9 ) + 10x*x (27)°) + 5x
x (81y%) + 1x 243)°
= x>+ 15x* y + 90x3 y*+ 270 x> y*> + 405 xy*+ 243y°
(x + 3y)° = x> + 15x% + 90x3y? + 270x%)° + 405xy* + 2433

Example 8.11: Expand (1 + a)” in terms of powers of a, where a is a real

number.

Solution: Taking x =1 and y = a in the statement of the binomial theorem,

we have
(1+ay = "Cy(l)y"+"C, (1" . a+"C, (1)"2a® + ...
+1C _ (Da™' +"C a"
ie, (1 +a)" =1+"Ciat"Cya*+ ..+"C_, a"'+a"..(B)
is another form of the statement of the binomial theorem.

The theorem can also be used in obtaining the expansions of expressions

( 1)5 y 15(a 2j5 (2t 3)6
X+t — |, |—=F+— |\t =|| == etc.
X X y 4 9 3 2t ’

Let us illustrate it through an example.

of the type
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m Solution: We have :
Notes 1 4 4 3 1 2 1 2
13- <G
X y X X y X y
Y
X

4
Example 8.12: Write the expansion of [l + l} , X, y# 0.
Xy

=
=
=
=
<

Example 8.13: The population of a city grows at the annual rate of 3%.
What percentage increase is expected in 5 years? Give the answer up to 2
decimal places.

Solution: Suppose the population is a at present. After 1 year it will be

3 3
a+—a=al|l+—
100 100

After 2 dwillbe al1e =]+ 2 lal1e 2
cr years,l W1 c 100 100 100

2
=a 1+i 1+i =a 1+i
100 100 100

5
Similarly, after 5 years, it will be a (1 + %j

Using the binomial theorem, and ignoring terms involving more than 3
decimal places, we get

5
a (1+ %) ~ a[1+5(0.03) + 10(0.03)*] = a x 1.159

159 X]()()XL = 15.9% in 5 years.

100

So, the increase is (0.159x100% =

22 ] Binomial Theorem Jll
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Example 8.14: Using binomial theorem, evaluate MODULE - |
(i) 1024 (i) 973 Algebra

Solution: Notes ﬁn

(i) 102+ = (100 + 2)4

= 4C, (100)*+4C, (100)3 .2 +4C, (100)* .2 +4C,(100).23 + “C, .2*

100000000 + 8000000 + 240000 + 3200 + 16

108243216

(ii) (97)3 = (100 — 3)?

3C, (100)* — 3C, (100)2 .3 +3C, (100) .32 - 3C,3?
= 1000000 — 90000 + 2700 — 27
= 1002700 — 90027

= 912673.

e EXERCISE 8.3 [

1. Write the expansion of each of the following:
() a+ by (b) (*—3y)° (c) (4a - 5b)*
(d) (ax + by)"

2. Write the expansions of:

7
(@) (1 -x) (b) (1%) (©) (1+20)°

3. Write the expansions of:

a b : 5 ’ 1 4
(a) (g + EJ (b) (336 - —sz (c) (x + ;)
X y i
() (; i §]
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4. Suppose I invest Rs. 1 lakh at 18% per year compound interest. What

sum will I get back after 10 years? Give your answer up to 2 decimal

places.

. The population of bacteria increases at the rate of 2% per hour. If the

count of bacteria at 9 a.m.is 1.5 x 10°, find the number at 1 p.m. on

the same day.

. Using binomial theorem, evaluate each of the following:

() (101)* (i) (99)* (i) (1.02)> (iv) (0.98)

¥4 GENERAL AND MIDDLE TERMS IN A
BINOMIAL EXPANSION

Let us examine various terms in the expansion (A) of (x +y)" i.e., in
(X _|_y)n — nCO X" + nCl xn—l y + nC2 xn—2y2 + .+ ncnil xyn—l + ncn yn
We observe that

. . 0.
the first term is "C, x" , i.e., "C,  x" )",

the second term is "C, x"' y, ie., "C,  x"! yl;

the third term is "C,x"2 y* ie., "C,  x"2 %

and so on.
From the above, we can generalise that

the (7” + l)th term is nC(r+1)—1 Xt yr; i~e~, nCr x"r y’.

If we denote this term by T we have

r+l 2
—n n—r ,,n
T, ="C.x""y

r+

T ., 1s generally referred to as the general term of the binomial expansion.

Let us now consider some examples and find the general terms of some

expansions.

Binomial Theorem Jil




| 311 Mathematics Vol-|(TSOSS) ' MATHEMATICS

1 n
Example 8.15 : Find the (» + 1) term in the expansion of (xz + ;J where

n is a natural number. Verify your answer for the first term of the expansion.

Solution:The general term of the expansion is given by:
n 2\n—r 1 '
TrJrl = Cr (X ) : ;

1
— nCr x2n—2r .
X

= nC_x2n-3r (@)

Hence, the (r + 1)"term in the expansion is "C, x?"3",

n
On expanding (Xz + —j , we note that the first term is ( x?)" or x".
x

Using (i), we find the first term by putting » = 0.
Since T,=T,,,
Tl — nCO x2n—0 = x2n
This verifies that the expression for T,_,is correct for » +1 = 1.

Example 8.16 : Find the fifth term in the expansion of

6
(=37
3
Solution: Using here T, , =Ty, which gives r+1=35,1ie., r=4

2 3
Also n =6 and let a=—§x.

_ 6x5 xgxxlz :@xlz
Ix2 8l 27

80
.. Thus, the fifth term in the expansion is 2—7 x'2
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EXERCISE 8.4

1. F or a natural number n, write the (+ +1)™ term in the expansion of
each of the following:

(@ (2x +y)" (b) (2a*> - 1)
1 n
(¢) (I -a) (d) 3+x_z
2. Find the specified terms in each of the following expansions:
(a) (1 +2y)¥; 6th term (b) (2x + 3)7; 4th term
e
(¢) (2a — b)'! ;7th term (d) (X +;j ; 4th term

7
(e) (x3 - Lz] ; Sth term
X

Now that you are familiar with the general term of an expansion, let us
see how we can obtain the middle term (or terms) of a binomial expansion.
Recall that the number of terms in a binomial expansion is always one more
than the exponent of the binomial. This implies that if the exponent is even, the
number of terms is odd, and if the exponent is odd, the number of terms is
even. Thus, while finding the middle term in a binomial expansion, we come

across two cases:
Case 1 : When 7 is even.

To study such a situation, let us look at a particular value of n, say n
= 6. Then the number of terms in the expansion will be 7. From Fig. 8.1, you

can see that there are three terms on either side of the fourth term.

middle term

000,0,000,
! l

3 terms 3 terms
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n
In general, when the exponent n of the binomial is even, there are )

n n
terms on either side of the (EJF 1] th term. Therefore, the (5+ 1) th term

is the middle term.

— 3 terms

— middle term

L— 3 terms

000, OO0, OO0,

Kig. 3.2

Thus, in this case, there are two middle terms, namely, the fourth,

7+1 7+3
1.€., B and the fifth, i.e., > terms

13+1 13+3
Similarly, if n = 13, then the > th and the > th terms, i.e.,

the 7th and 8th terms are two middle terms, as is evident from Fig. 8.3.

From the above, we conclude that

OO0OO0O0OO0OQO0lIDO0OOOO

Fig. 8.3

When the exponent 7 of a binomial is an odd natural number, then the

n+l1 n+3 ) ) )
5 th and 5 th terms are two middle terms in the corresponding

binomial expansion.

. Binomial Theorem

MODULE - |
Algebra

Notes ﬁD



MATHEMATICS | 311 Mathematics Vol-|(TSOSS) |

MODULE - |
Algebra

G&Notes

Let us now consider some examples.
Example 8.17 : Find the middle term in the expansion of (x% + %)% .

Solution: Here n = 8 (an even number).
8 . . .
Therefore, the 5 +1 |th i.e., the 5th term is the middle term.
Putting =4 in the general term T, =%C, )" (2.
8—4 4
T, =3C, ) () =70 x8 )"

9
1
Example 8.18: Find the middle term( s) in the expansion of (2)62 +;j .

9+1 9+3
Solution: Here 7 =9 (an odd number). Therefore, the (Tj th and [TJ th

are middle terms i.e., T, and T, are middle terms.

For finding T, and T, putting » =4 and » = 5 in the general term

1 6
9—r
T. =°C, (2x%) . [;)

:9x8x7x6.32xm' 1
Ix2x3x4

5
1
T =9C. (2x2) " (—j = 2016 x°
and T, ="C, (2x°) .
Thus, the two middle terms are 4032x° and 2016 x°.

e EXERCISE 8.5

1. Find the middle term(s) in the expansion of each of the following:

8

@ Qv+ )" (b) (H%f]
1 6

© (xgj @ (-9
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2. Find the middle term( s) in the expansion of each of the following:
(@) (a+0b) (b) (2a - by
T
© |53 @ |x+

AN BINOMIAL THEOREM FOR RATIONAL
EXPONENTS

So far you have applied the binomial theorem only when the binomial

has been raised to a power which is a natural number. What happens if the
exponent is a negative integer, or if it is a fraction? We will state the result that
allows us to still have a binomial expansion, but it will have infinite terms in this

casc.

The result is a generalised version of the earlier binomial theorem which

you have studied.
Theorem 8.2 The Binomial Theorem for a Rational Exponent.

If  is a rational number, and x is a real number such that | x | < 1, then
(1+x)”=1+rx+r(r2—71)x2+ .............. (D)

We will not prove this result here, as it is beyond the scope of this course.
In fact, even Sir Issac Newton, who is credited with stating this generalisation,
stated it without proof in two letters, written inA.D. 1676. The proofwas developed
later, by other mathematicians, in stages. Among those who contributed to the
proof of this theorem were English mathematician Colin Maclaurin (A.D. 1698-
1746) for rational values of 7, Giovanni Francesco, M.M. Salvemini (A.D.
1708-1783) and the German mathematician Abraham G. Kasther (A.D. 1719
- 1800) for integral values of7, the Swiss mathematician Leonhard Euler (AD
1707-1783) for fractional exponents and the Norwegian mathematician Neils
Henrik Abel (1802-1829) for complex exponents. Let us consider some examples

to illustrate the theorem.
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Example 8.19 : Write the expansion of (1 +x)™!, when |x|<1.
Solution: Here » = —1 [[with reference to (D) above].

Therefore,

(et =1eyxs ELED 2, EDEDED) 5,

ie, 1+x)1=1-x+x>2-x3+ ...
Similarly, you can write the expansion (1-x)'=1+x+x>+x3+ ...

Note the above expansions. In case of (1 + x)~'all the terms have positive
and negative signs alternate, while in the case of (1 —x)~! all the terms have

positive sign.

You may have also observed the following points about the binomial ex-

pansion (D) in general;

1. If ris a natural number, then (C) and (D) coincide for the case |x|<1.

-1 )
2. Note that "C =1, "C,=r, 'C, = r(r—')etc. Thus, the coefficients
r(r—1) . . . . .
1, r —2 T e in (D) look like combinatorial coefficients.,

However, recall that "C| is defined for natural numbers  and whole

numbers only.

Therefore,

'C,, "C,,"C,, etc. have no meaning in the present context.
3. The expression (D) will have an infmite number of terms.

4. The sum of the series on the RHS of (D) may not be meaningful if

x> 1.
For example, if we put x = 2 in Example 1, we have

(1+2)!'=1-2+4-8+16-32+ ...

e, —=(1-2)+@-8)+(16-232)+ ...

1
3

Binomial Theorem Jil
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ie., = -1-4-16- ..,

1
3
which is clearly false.

Therefore, for (D) to hold, it is necessary that | x| <1

Let us look at some more examples of this binomial expansion.

Example 20: Expand (x +y)", where r is a rational number and <1.

Y
x

3
Hence expand (3 + 5p)*3 5, when | p | < 3

Solution: (x + y) = x" [1 + %) (1)

<1, we have

(1 N zjr zm(z) L 1= (zjz L =) (=2 (zf N
X X 21! X 3! X

Therefore, from (1), we have

ey = m(zj +M(ZT +M(1j N
X 21 \x 3! x

rr=l) 20 rr=D(=2) .,
21 3!

Since it is given that

Y
X

ie, (x+y) =x"+rm'"y+ V4 (2)

: 3
Now, to solve the second part of the question, note that | p | < 3

2
If ‘5717 <1, then putting x =3,y =5p, r= 5 in (2), we get
2(2_ )
2_ 2_
(3 +5p)!'S = 3%/5 +%(3)5 (5p) + 222 OGP +
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Algebra = 3254 375 2p)+ 5 5] (3)—% 2507 + ...

2
mNotes _ 32/5 4 3735 (2p)- 3-3/5 p2 Lo

The result we have just obtained in Example 8.20 is another form of the

binomial theorem for a rational exponent. Let us restate it formally.

If r is a rational number and f <1
(x+y) =x"+rx"" y+ % x4 W Xy 4+ ... (E)
Note that you could have expanded (x + y)" differently if % >1
were true. In this case, you would have had < I, and

Consequently, we have the following result:

For a rational number 7, an expression like (ax + by)” can be expanded in two

different ways, depending on whether

z—x <lo % <1
Example 8.21: Expand (x + y)™ then (i) ‘% <1 and (i1) ‘% <.
Solution: (i) Since % <1, using (E) we have
I
LD s,

3!

32 ] Binomial Theorem Jll
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2 3
Sy N 15y 35y N

6 7 8

1
X x x x

X

(ii) Since < 1we have to write (x + y)™ in the form (y + x)™.

Using (E), we can write

¢+ =y () y T

L EICO s, CHOED) s

vy )»*

1 5x  15x%  35x%°
- +

Note that in (i), we have obtained the expansion in ascending powers

of y while in (ii), we have obtained the expansion in ascending powers of x.

Binomial Theorem for Rational Index
In the previous section, we have proved that
(+x)" = "Cy+" Cyx+ "Cox” +.. 4" C,x" +..4" C x"
where 7 is a positive integer and x is any real number. We can write this also

in the form.

(1+x)" = 1+ﬁx+n(n2—'—l)x2 +ot n(n—l)...('n—r—lrl) x4
. r.

()

The RHS of the above equality terminantes automatically after (n + 1)
terms, where 7 is a positive integer since we come across the factor (n — n)

from the (n + 2)™ term onwards. But in casen is a negative integer or, more

generally, a vational number (;J which is not a positive integer, then (1) contains

infinite number of terms in RHS. Still it becomes valid provided we stipulate
the condition [x| < 1. (The proof of this fact is beyond the scope of this book).

Now, we state without proof, the binomial theorem for rational index.
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Theorem (Binomial Theorem for Rational Index)

If m is a rational number (but not a positive integer) and x is a real

number such that |x| <1 (thatis, —1 <x <1), then

-1 =1).(m-r+1
memm=l o, ymon=Dmortl)

1+x)" = Y . N

s zm(m D).. (m r+1) v

Now, we discuss some special cases.

Negative Integral Index

Let m be a negative integer, say m = — n (n is a positive integer) and
Ix] < 1. Then

L d+x)" =1+ Cm, EoCnzD o,
1! 2!

N (-n)(=n-=1)...(—n—r+1) ot

r!

no. n(n+1) xz....+(—l)r n(n+1)..(n+r+1) N
1! 2! r!

=1-

. (1+x)—n — Z(_l)r n+r—lcr.xr

r=0

2. On replacing x by —x in the above, we get

n 4 N n(n+1) , n(n+1)(n+2) 3
(1-x) —1—1—!(—x)+2—!(—x) —T(—x) +...
Ly n(n+l)...r.§n+r—l) (=x) + ...
—1+£x+n(n+l)x2+n(n+1)(n+2)x3+
INT 2! 31
N n(n+1)...(n+r—1)x,+

r!

. (1 _x)—n — z (n+r-1) Cr x
r=0

Binomial Theorem Jil




| 311 Mathematics Vol(TSOSS) |

MATHEMATICS

Rational Index

Let m be a positive rational number, P

positive integers (¢ = 1) and x is a real number such that |x| < 1

A s V1 ) ol

rla _ 1,4
3. (I+x) 1+1!x+ o X7+ 31 X+

o),

+ X +...
7!

(X)), pe=a) (xY, pp-aXp-20)(x) ,
Mg 20 g 3! q

, PP=9)-(p=(r=Dq) (1j .

r! q

Similarly, we can derive that

4 (-x)Pt =1-P[ X LPp-a)(x z_p(p—q)(p—2q) x 3+
' 11l g 21 g 31 q

1y P(p_Q)m-(l"—(l”—l)q) (ij .
r! q

i (1+x)Z 1 p(x)|, prtofx z_p(p+q)(p+2q) X 3+
' '\ g 2! q 3! q

L 1y PP ({9 +(r=1)q) ({J .
r! q

6 (1—x)_§ 12X et x 2+p(p+q)(p+2q) x 3+
' 1" ¢ 2! q 3! q

, Pp+q).. (p+(r=1q) (1} .\
r! q

say m = — where q, p are

MODULE - |
Algebra

Notes ﬁD

M| Binomial Theorem | 3 35 [




MATHEMATICS | 311 Mathematics Vol-(TSOSS) |
MODULE - | Problems

Algebra 1. Find the sum of the infinite series
2 3
O nores| 1420, 25017 258017,
32 36\2 3.6.7\2
Solution:

The given series can be written as

21 2501V 258(1)
S=l4+——F+—| = | +——|=| +
16 12\2) 12316

The series is of the form

2 3
1 2x pprg)(x)y  pptap+2q)(x)
1! g 21 \2 3! q

where p=2,p+¢g=5 and f:l or p=2,g=3,x=
qg 6

Hence, by the binomial theorem for rational index.
-2 s
S=(1-x) 1 :[I_EJ =023 _ 34
2. Find the sum of the series

3.5 N 3.5.7 N 3.5.7.9
5.10 5.10.15 5.10.15.20

Solution:
Write

35 N 3.5.7 N 3.5.7.9
~ 510 5.10.15 5.10.15.20

3
On adding 1+§ both sides, we get

3 3 35 3.5.7
l+=+S=1+=-+ + +
5 5 5.10 5.10.15

Binomial Theorem Jil
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3(1) 3501 357(1Y)
= = = A=+
1ms) 215 31 |5

_ 1+£(§J+p(p+q)(zj2+p(p+q)(p+2q)[§j3 o

'\ g 2! q 3! q

1
(where p=3,p+g=5 and f=§)
q

2
(l—x)f where p=3,¢g =2 and ng

(-2 -5 -6)
g V5 _8
33 5

1.3 1.3.5

3. If le +
5 5.10 5.10.15

+...00, then find 3x2 + 6x.

Solution:

1 1.3.5

1,13
5510 5.10.15

1 1.3 1.3.5
=>l+x=1+—+—+ +...00
5 5.10 5.10.15

) 1.3(1)2 1.3.5 1)3
== +—|=| +
15 31 5

_ 1+£[fj+p(l?+9) (5)2+p(p+q)(p+2q)(§j3+_moo

q 2! q 3! q

where p=1,p+¢g=3 and

1
5

Q| =

. Binomial Theorem
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Algebra (1-x) ¢ where p=1,¢4g=2 and x—5
m 1 1
Notes =(l_zj_2 _ (gj_z _ |5
5 5 3

= (1+x)* 2 4 2x 1= 3P 464325

3x2 + 6x = 2.

EXERCISE 8.6

1. Expand each of the following:

@ (-py [pl<1 ®) (1+39%, x| < 3

1
© (159, |z|<3

2. Expand each of the following:

2x

@ (7-6x)°, |25 <1 (b) Qa+x)72, |2|<1

() (2+3»"7,

<2
3
3. (a) State the condition under which the expansion of (x + 2y)~> will be
valid in
(1) ascending powers of x
(i1) ascending powers of y.
Also, write down the expansion in each case.

(b) Expand, (3 + 6y)"#3stating the range of values of y for which the

expansion is valid .

Binomial Theorem Jil
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A3 USE OF BINOMIAL THEOREM IN MODULE - |
APPROXIMATIONS Algebra

As you have seen, the binomial expansions sometime have infmitely many Notes @]
terms. In such cases, for further calculations; an approximate value involving
only the first few terms may be enough for us. Let us illustrate some situations
in which we fInd the approximate values.
Example 8.22 : Find the cube root of 1.03 up to three decimal places.
Solution : We want to find (1.03)" up to three decimal places.

Now  (1.03)"* = (1 + 0.03)!3

Since [0.03| < 1, from (E), we have

1 (1 _1)
(1+0.03)" =1 + % (0.03) + % (0.03) + ... (0

Now, we need to approximate the value up to three decimal places.
Since a non-zero digit in the fourth decimal place may affect the digit in the
third place in the process of rounding off, we need to consider those terms in
the expansion which produce a non-zero digit in the first, second, third or

fourth decimal place.

Therefore, we can take the sum of the flrst three terms in the Expansion|
(i), and ignore the rest.

1 (Jj
(1.03)"3 ~ 140,01 + % (0.0009)

1 +0.01 - 0.0001
1.0099

~ 1.010 taking the value up to three decimal places.

Now, the digit after the third decimal place is greater than 5, so we have

increased the third decimal place by 1.

Thus, the cube root of 1.03, up to three decimal places, is 1.010.

M| Binomial Theorem
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Example 8.23: Assuming y to be so small that y* and higher powers of y

2 -3
can be neglected, find the value of (1-2y)3 (4+5y)2 .

1
Solution: Note that y is very small. So, we can assume that |y | < 3 Then,

using the binomial theorem, we get

and

(4+5y)7 =47 1 (— %} @7 7 (5)

L))

2 2
Y (5y)" +....

Since we can neglect terms containing y* and higher powers of y, we
have

2
3

2 4
(I1-2y) =1+ - (2y)=1-—y,
3 y

4+5))° ~ (@) - % @)° (59)

Aoyttt s S
37 8 6a) 8 67 ea? T16)

1
8 1927 again neglecting the term containing ) .
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2 =3
So, 1-2y)3(4+5y)2 is é - % y, if we neglect the terms involv-

ing y? and higher powers of y.

e EXERCISE 8.7 .

1. Find the value of each of the following up to three decimal places:

(a) (1.02)2 (b) (1.01)3 () (0.97)*

) 47.60 [Hint : (7.60)3 = (8-0.4)13]

© 432 (Hint : (82) = 81+1)* = 3 (1+ %j“]
0 (24)7 [Hint: (24)? = (25-1) ]

2. Assuming z to be so small that z2 and higher powers of z can be ne-

glected, find the value of

(@) 3+ 22)° (b) (1 + 32)3(1-52)2
JI+z+(1-2)" 1"‘;2"‘1_?2
(c) (+2) + N [Hint : LHS ]

(1+z)+(l+;z)

(1- z)% +(11- 52)?
16—z

@ PARTIAL FRACTIONS
LEARNING OUTCOMES

After studying this lesson you will be able to :

(d)

e To split a fraction in to proper "partial fractions ".

e The partial fraction decomposition is useful in finding the particular in-

tegrals of differential equations.
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MODULE - | e The partial fraction decomposition is useful in expanding infinite series.

Algebra We split a fraction into proper "partial fractions". This splitting is based
m on the roots of the denominator of a fraction under consideration. This de-
Notes . . . . . . .
nominator, being a polynomial with real coefficients, can be written as a finite

product of linear and/or irreducible quadratic factors.

8.7.1 Definition (proper and improper fractions)
f(x)

g(x)
f(x) is less than the degree of g(x) otherwise it is called an improper fraction.

a rational fraction is called a proper fraction if the degree of

Definition : (Partial Fraction)

If a proper fraction is expressed as the sum of two or more proper
fractions, where in the denominators are powers of irreducible polynomials,

then each such proper fraction is called a partial freaction of the given fraction.

f
X2 PARTIAL FRACTIONS OF g(())(())’ WHEN

g(x) CONTAINS NON- REPEATED

LINEAR FACTORS

8.8.1 Rule I

S ()

Let % be a proper freaction. If (ax +b) a # 0 is a non-repeated

A
linear factor of g(x). Then there will be a partial freaction of the formﬁ
ax

corresponding to the factor ax + b where A is a non-zero real number to be

determined.
Example 1
Resolve ——>*in to partial fracti
esolve x+3) (x=6) in to partial fractions

Binomial Theorem -
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Solution :

3x A B
Let = +
(x+3)(x—-6) x+3 x-6

3x _A(x-6) + B (x+3)
(x+3) (x=6)  (x+3) (x—6)

3x=A(x-6)+Bx+3) .. (1)
put x =6 in (1)

3(6)=B(6+3):>B:%:2

put x = -3 in (1)
3(-3) = A(-3 -6)

A=_—9=l
-9
3x _ 1 N 2
(x+3)(x—-6) x+3 x—6
Example 2
2x—-1

(2x+3) (x—1)

Solution : Let 2x -1 = A + B
2x+3)(x-1) 2x+3 x—1
2x—1 _A(x-1) + B(2x +3)

2x+3) (x=1)  (2x+3) (x=1)
=>2x-1=Ax-1)+B (2x +3)
put x =1 in (1)
2(1) — 1 = A(0) + B2 + 3)
= 5B=1= B= %

put x = E) in (1)

-3 -3
2[7J ~1= A(7 - 1)+B(0)

(D)

MODULE - |
Algebra

Notes ﬁn

M| Binomial Theorem




MATHEMATICS | 311 Mathematics Vol-(TSOSS) |

MODULE - |
Algebra

mNotes

:>—4:A(_—5] ::>A=§
2 5
20-1 8 1
(2x+3) (x=1)  52x+3) S(x-1)
8.8.2 Rule 2
S (x)
g(x)

that (ax + b)",a # 0, is a factor of g(x), i.e., (ax + b) is a repeated linear

Let be a proper fractions. If 7 is the largest index (n > 1) such

factor of g(x), then there will be n terms of the form

A A, A,
+ ) + .+t
ax+b  (ax+b) (ax+b)"

in the partial fraction expansion of of, where A, A,, ... A, are

g(x)
real numbers, to be determined.
Example 3
x—1 . . .
Resolve ——————- into partial fractions
(x+1) (x+2)
Solution : Let x-1 A + B ¢

(4D (1427 x+1 x+2  (x42)

x—1 A +2)” + B(x+1)(x+2)+C(x +1)
(x+1) (x+2)> (x+1)(x+2)?
= x-1=Ax+2?+Bx+1)(x+2)+Cx+1) ..... (1)

putx=-2 in (1)
-2 -1 =A0) + B(0) + C(-2 + 1)
= C=-3=C=3
put x = -1 1in (1)
-1 -1 = A(-1 + 2)?> + B(0) + C(0)
= 2=A=>A=-2

Binomial Theorem Jil
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Now comparing the coefficiants of x?

in (1) we get.
A+B=0
=>B=-A=>B=—-(-2)= B=2

x—1 2,2 3
(x+1)(x+2)> x+1 x+2 (x+2)

Example 4

1
Resolve ———— into partial freactions.
x7(2 + x)

2

1 A B D
Solution : — = — % +
X X 2+x

(2 + x) - X

1 _ A(?) 2+ x)+Bx(2+x)+ C(2+x)+Dx’

x*(2 + x) x*(2+x)
Ax?2 +x) +Bx(2 +x) + C2 +x) +Dx* =1

putx =0 1in (1)
1

A(0) +B(0) + CQ)+D(0) =1 = C= -

put x = -2 in (1)

A(0) + B(0) + C(0) + D(-2)3=1 = D = _?1

Now comparing the coefficiants of x* in (1)
1

A+D=0 :AZ—D=§

Now comparing the coefficiants of x? in (1)

JA+B=0 = B=-2A=-2[L]="1
8) 4

1 1 1 1 1
3o ke a2 to3
x(x+2) 8x 4x 2x”  8(x+2)

(D)

MODULE - |
Algebra

Notes ﬁD
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Algebra > 45x+7
9 Resolve % into partial fractions.
Y
Notes 5
A B
Sol : Let X" +5x+7 C

(x-3  x-3 i (x-3) ’ (x-3)°

X +5x+7  A(x-3)"+B(x-3)+C
(x-3° (x=3)’

W+5x+T7=A+B-6A)x+ (9A-3B+C) ..(1)
Now comparing the coefficiants in (1) we get
A=1,B-6A=59A-3B+C=7
Solving these equations we get

A=1,B=11,C =3l

X2 +5x+7 1 11 31
3T + 3T 3
(x-=3) x-3 (x-3) (x-3)

Note: The above problem can also be resolved into partial fractions as fol-

lows.
Let x—3=y thenx=y+3

X +5x+7 (Y43 +5(y+3)+7
(x-3)° >

o +11y + 31

y3

o1 3
y oy
1 11 31
+ 2 + 3
=3 (x=37  (x-3)

Binomial Theorem Jil
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EXERCISE 8.8

Resolve the following fractions into partial fractions.

1 5x+6
' 2+x)(1—-x)
) x+4
(=4 (x+))
3 2x+3
ENEES N
4 x*—x +1

(x+1)(x-1)?

1

x* (x+a)

8.8.3 Rule III

VAC)

g(x
repeated irreducible factor of g(x) then corresponding to this factor there will

Ax+B . . f(x)
in the expansion of ,
g(x)

Let

be a proper fraction. It ax> + bx + ¢, a#0, is a non-

be a partial fraction of the form —;
ax” +bx+c

where A and B are real numbers, to be determined.
Example 6

5x%+2 ] ) )
Resolve —3— into partial fractions.
X +x

50°+2 _ A Bx+C

o+ x b x> +1

Solution : Let

5°+2 A’ +1) + (Bx+C)x
x(x* +1) x(x*+1)

Then

= 52 +2+AXP+ D)+ Bx+C0)x ... (1)

. Binomial Theorem

MODULE - |
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MATHEMATICS

MODULE - |
Algebra

mNotes

| 311 Mathematics Vol-(TSOSS) |

putx =0 in (1)
500+2=A=> A=2
Comparing the coefficiant of x? in (1)
5=A+B
= 5=2+B=B=3
Comparing the coefficiant of x in (1)

0=C

5x*+2 2 3x

X +x x x4l
Example 7

3x-1 . . .
Resolve 3 into partial fractions.
(I-x+x7) (x+2)

3x—1 A N Bx+C
(I-x+x%) (x+2) 2+x l-x+x’

Solution: Let

3x—1 _ A(l-x+x?) + (Bx+C)(2+x)

(1-x+x%) (x+2) (I1-x+x%) (x+2)

= 3x-1=A(l—x +x?) + Bx + C)2 + x)
put x = -2 in (1)
3(-2) -1 = A(1 +2 +4) + [B(-2) + C] (0)
= -7=7A = A=-1
comparing the coefficiant of x? in (1)
A+B=0=B=-A=-(-1) =1

put x =0 in (1)

(1)
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MATHEMATICS

2C=-1-A=-1-(-1)=0
= C=0

3x-1 -1 X
2 - + 2
I-x+x")2+x) 2+4+x l-x+x

EXERCISE 8.9

I. Resolve the following fractions into partial fractions

x> +1
(x* +4) (x-2)

x*+1
(X2 +x+1)°

x> -3

3. (x+2) (x* +1)

Partial Fractions

e Resolve _5x+6 into partial fractions
2+x)(1-x)
Sa+b A B

Solution: Let

= +
2+x)(1-x) 2+x 1-x
Sx +6 -—A(l —x) + B2 +x)

x=1= 51) +6=B2+1)

11
ll=3B:B=?

Xx=-2 = 5=2) +6=A(-1-(=2))+0

4
“4=3A = A=

MODULE - |
Algebra

Notes ﬁn
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MODULE - | . Sx+6 _-4/3 11/3
Algebra 2+x)(l-x) 2+x 1-x
m __ 4
Notes 32+x)  3(1-x)
2x+3
e Resolve m into partial fraction.
) 2x+3
Solution: —(x _1y

Let x—- 1=y = x=y+1

_2(y+D+3 2y+5

3 3
y Y

_2.5
vy

__2 .5
(n=1° (n-1y

=(x -1 @x-1)7>%

KEY WORDS

e The statement of the principle of mathematical induction namely.

P(n), a statement involving a natural number #, is true for all n > 1,
where 7 is a fixed natural number, if
(i) P (1) is true, and
(i1) Whenever P(k) is true, then P(k + 1) is true for k£ € N.

e For a natural number #,
(x + y)n — nCO X" + nC1 xnfl % + ncz xn72y2 +. + nCn—l Xy”hl + nCn yn
This is called the Binomial Theorem for a positive integral (or natural)

exponent.

Binomial Theorem Jil
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e Another form of the Binomical Theorem for a positive integral exponent | MODULE - |

is (1+ay="Cy+"C,a+"C,d*+..+"C,_, a'+"C a". | Algebra

1
e The general term in the expansion of (x + )" 18 "C x" )" and in the | notes ﬁD
expansion of (1 +a)"is”C a’, where n is a natural number and

0<r<n.

e Ifnisan even natural number, there is only one middle term in the expansion

of (x +y)" If n is odd, there are two middle trems in the expansion.

e The formula for the general term can be used for finding the middle

term(s) and some other specific terms in an expansion.

e The statement

r(r—1) ‘4 r(r—=1)(r-2) [N
21! 3!

1+x)'=1+r+

where, 7 is a rational number and | x| <1 is called the Binomial Theorm
for a rational exponent. In this expansion, the number of terms is infinite

if 7 1s not a whole number.

rr=1) 5 , rr=Dr-2) ,; 3
o © T 3! v

Y
X

o (xty)'=rxtrxly+

where r 1s a rational number and <1 is another form of the Binomial

Theorem for a rational exponent.

e Expressions like (ax + by)" , where 7 is a rational number, can be expanded

ax

<1

in two different ways, depending on whether <1 or

VALY
g(x)
factors of g(x) are given in the following table.

The various forms of the partial fractions corresponding to the

M| Binomial Theorem | 3 5 1
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MODULE -1 | | SL.No.

Factor of g(x)

The form of the partial fractions

Algebra of 1)
m g(x)
Notes A
1. ax + b et h
Al + A2 + + L
2. |(@x+b)y,a=0 ax+b  (ax+b? T (ax+b)
n(>1) €N
) A +B
3. Irreducible m
ax®+bx+c,a# 0
A, x + B, A,x+B,
4, (ax?* +bx + ¢)", a # 0 +

ax’> +bx+c  (ax* +bx + ¢)*

A, x+B,
+
(ax” +bx+c)"

e http:// mathworld.wolfram.com.

PRACTICE EXERCISE

1. Verity each of the following statements, using the principle of mathemati-

cal induction:

¢ a+tar+arr+ .. +ar =

real number.

SUPPORTIVE WEBSITES

e http:// www.wikipedia.org

(a) The number of subsets of a set with n elements is 2".

(b) (a+b)y'>a"+b",V n>2 where a and b are positive real numbers

a(r" -1)

v —

where r>1and ¢ is a

52 ] Binomial Theorem Jll
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2.

(d) ("-1)is divisible by (x + 1) ¥ x e N
(e) (10?"7!'+ 1) is a multiple of 11.

[Hint : 1021 = 102 [(10%! + 1) — 99]
(® (4.10%" +9.102! + 5), is a multiple of 99.
(g) n(n* - 1), is a multiple of 24, when 7 is odd.

[Since n is odd, assume that P(2k+1) is true, as (2k + 3) is always

odd. Then try to prove that P(2k+3) is true.]
(h) (1 +x)"> 1+ nx where x > 0.

(1 If f and g are polynomials in x with real coefficients and
f+g % 0, then (f+g) divides (f >4+ g )V n e N.

Write the expansion of each of the following:

() (B3x +2y) (b) (P-2)° () (1-x)?°

2 Y 1Y
(@ (1+§x) © (x+3x] () (x5

2 4 4 LY 1Y
® (%;} (h) (f—;} (i [x3+7)

Write the (# + 1) )™ term in the expansion of each of the following,
where n e N :

(a) (Bx—)2)" (b) (f + lj

X

Find the specified terms in the expansion of each of the following:

(a) (1-2x)7 ; 3rd term [Hint: Here r = 2]

LY
(b) (x +Z] ; middle term(s)

MATHEMATICS

MODULE - |
Algebra

Notes ﬁD
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mNotes

10.

11.

11
1
(©) (3x—4y)S : 4 th term (d) (yz —;J . middle term(s)

(e) 3 -y)1” ; 4thterm () (1 -3 x»)'%; middle term(s)
(g) (- 3x —4y)® ; 5 thterm

(h) Write the rth term in the expansion of (x — 2y)° .

(i) Write the (» — 1) term in the expansion of (1 + 2x)3.

If T,, denotes the rth term in the expansion of (1 + x)" in ascending

powers of x (n being a natural number) , prove that
rr+ DT, = —r+ 1)(n—r)x2Tr
[Hint: T,="C_, .x" and T, = "C_, x]

k_is the coefficient of x"~! in the expansion of (1 + 2x)'° in ascending

powers of x and k_, = 4k . Find the value of .
[Hint : £ ='°C_, 2! and k_, =1°C_ 2]

The coefficients of the 5th, 6th and 7th terms in the expansion of
(1 +a)" (n being a natural number) are inA.P. Find n.
[Hint : "C, — "C, = "C, — "C, ]

Expand (1 +y +3)* [Hint: (1 +y+ )" = {(1 +y) +y}*

Write the expansion of each of the following:

1
@ (-2 |x|<1 O G
1 1
© G-2%z]<3 @ a3

State the condition under which the expansion (x — 2y)~> will be valid

in ascending powers of y. Also write the expansion.

State the condition under which the expansion of (x — 3y)~"? will be

valid in ascending powers of ). Also write the expansion.

Binomial Theorem Jil
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12. Expand the following, stating the condition of y under which the ex- | MODULE - |

pansion will be valid:

Algebra

1
—_— N
@ a1y ®) G-»? )

13. Find the value of each of the following up to three decimal places, using

the necessary number of terms in the expansion:

(a) (0.99) (b) (1.03)7

(©) 326 [Hint:(26)%=(27—1)%]
d U3 [Hint : (127)7 = (128=1)7]
(e) 335 [Hint:(35)%={32+3)%]
o B [Hint : 31)° = (32-1)°]
(2 31001 [Hint:(lOOl)%:(IOOOH)%]

14. Assumingy to be so small that y? and higher powers of y can be ne-

glected, find the value of each of the following:
1

_ -3 272
@ 45y ?asan: (b) (1_4(y4) - S)Z/fy )
JI=3y + (1-)"°
() 4—y
15. Astudentputsn=0in (1 +x)"=1+nx + n(;;—'l) x24T

and obtains (1 +x)°=1+0+0+..+x".i.e 1=1+1 Can you

detect the error in this solution?

16. Assumingthattheexpansions are possible, fimd the coefficientof 3 in
(1= 4 (1 - 2)'",

17. Prove that
IT+x+x2+3+. ) A -x+x*-x+.)=1+x2+x*+x0+ ...
[Hint : LHS = (1 —x)' (1 +x)7' = (1 — x?)7'].
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Algebra

m EXERCISE 8.1
Notes

. (b), (e) and (f) are statements; ( a) is not, since we have not given the

range of values of n, and therefore we are not in a position to decide,
if it is true or not. (c) is subjective and hence not a mathematical state-

ment. (d) is a question, not a statement.

Note that (f')is universally false.

. P(1): 6 is a factor of 13 + 5.1

P(2) : 6 is a factor of 2° + 5.2
P(k) : 6 is a factor of k* + 5k
P(k+ 1) : 6 is a factor of (k+ 1)3 + 5(k + 1)

. (a) P(1):2>2

P(k) : 28>k + 1

Pk +1): 2K >k +2
M) P(I): 1 +x> 1+x

P(k) : (1 +x)f> 1 + kx

Pk+1):(1+x) > 1+ (k+ x
(c) P(1): 6 is divisible by 6.

P(k) : k(k + 1) (k + 2) is divisible by 6.

P(k+ 1): (k+ 1) (k+ 2) (k +3) is divisible by 6
(d) P(1): (x —y) is divisible by (x — y)

P(k) : (x* — %) is divisible by (x — y)

P(k + 1): (x** 1 — yk* 1) is divisible by (x — y)
(e) P(1):ab=ab

P(k) : (ab)k = a'b*

P(k + 1) : (ab)"! = g&1 | p1

Binomial Theorem Jil
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11 7
=t —t+—i
() P(1): st3t 5l a natural number.

EoE
P(k) : —+—+— 1is a natural number.
5 3 15

(k+1)° +(k+1)3 LT+

P(k + 1): is a natural number.
3 15
1 1
R B
2): Ix2 2x3 3
1 k

. — + +....+ =
PO T2 T 23 T k) ket

R S B =5
PO s 5 T k1) (k+D)(k+2)  k+2

(b) P(1):1=1?
PQ2):1+3=2?
Pk) : 1 +3+5+ ... +Rk-1)=k

Plh+1):1+3+5+...+Qk-1)+[20k+ 1)-1] = (k + 1)

(¢) P(1): 1 x 2<1(2)?
P2) : (1x2) + (2x3) < 2(3)?
P(k) : (1x2) + 2X3) + oo + k(k + 1) < k(k + 1)

P(k+ 1) : (1x2) + (2x3) +..ot (k + D)(k + 2) < (k + Dk + 2)?

1 1
(d) P(1): EZE

2
5

1 1
S T ——
P@) I1x3 3x5

. Binomial Theorem
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mNotes

. (a)

1o I k
. — 4+ +..... + =
PR = 153 T3x5 Qk—1)2k+1) 2k+1
L I ket
Ple+ 1)t 53 T35 (Qk+1)(2k+3) 2k+3

EXERCISE 8.3

. (@) 843 + 12ab + 6ab® + b3

(b) x'2 — 18x'% + 135x%)? — 540x%3 + 1215x** — 1458x%)° + 729y
(c) 256a* — 1280a’b + 2400a’b*> — 2000ab’ + 625b*

(d) a"x"+ na”_lx"_lby + —n(nz'— D an_z)c”_zbzy2 +...+b"y"

(@) 1 — 7x + 21x% — 35x3 + 35x* — 21x° + 7x6 — X7

7x 21x% 35x 35kt 21 7x¢ &
b)) +—t+—+—FF—Ft—+—F+—

y Y Y Y y Y Y
(¢) 1 + 10x + 40x? + 80x% + 80x* + 32x°

@  5a*h 54°h* 54°b° Sabt b
+ + + + +—
243 162 54 36 48 32
354375 590625 B 590625

+
x2 x5 X8

328125 78125
+ 14

(b) 2187x" —25515x" +127575x -

11
X X

(c) x* 4 4x? +6+iz+i4

X X
(d) ;—Z+5;—z+10§+10§+5i—j+i—2
. Rs. 4.96 lakh
162360
. (i) 104060401 (ii) 96059601
(iii) 1.061208 (iv) 0.941192
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EXERCISE 8.4 MODULE - |

o Algebra
1. (a) ncrzn rxn ryr

(b) "C.2" " a* (-1) Notes ﬁn

() "C.(=1)d

(d) "C 3%
2. (a) 1792

(b) 15120x*

(c) 14784a°bb

d) 20

(e) 35x
EXERCISE 8.5

1. (a) 8064 x5°

1120 4
®) =g

(c) 20
(d) —252x10

2. (a) 35a°b3, 35a3b*
(b) 403245b%, —2016a*b°

105 4 ;3 140 5 4
—Xx )y, —X
(¢) 2 Y3 Yy

462 462

4 °
X X7

M| Binomial Theorem
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Algebra |\ e 10+ (b) 1+ dx + 22 + ..
mNotes ()1 —6z+322+4z3 + ...

- @ 5t eser” T ® 37 Tea® TTeas

1 1
(c) 37y7 {Hiy— 4 2+...1

3. (a) () <1: — + T

(ii) <1:—5——6+—7 .......

EXERCISE 8.7

1. (a) 1.041 (b) 0.971
(c) 1.130 (d) 1.968
(e) 3.009 (f) 0.204
2. (a L 102 (b) 1 + 122
243 729
@ 1-2 @ 61—z

EXERCISE 8.8

1 4
3(1-x) 3(2+x)
1 1 1

2 + -
T 2(x=2)  2(x+2) x+1
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2,5
(x-1*  (x-1)’
3 1 1
+ +
4x+1)  dx-=1) 2(x-1)>
1 1 1 1

f— + —
> a@x  a*x?  ax’  a’(x+a)

3.

4.

EXERCISE 8.9

3x+6 5
l. 2 +
8(x“+4) 8(x-2)
1 3 X
x* x4+l (P Hx+1)
1 4x—-8

3 5(x+2)  s(2+1)

PRACTICE EXERCISE

2. (a) 243x° + 810x% + 1080x3? + 720x%° + 240xy* + 32)°

(b) p* — 8p’q+28p°q*—56p°q> +70p*q* - 56p°q> + 28p*¢° - 8pq’ + ¢*

(¢) 1 — 8x + 28x% — 56x° + 70x* — 56x° + 28x% — 8x7 + x8

(d) l4axs 20,2, 1005, 80 4 6405, 64 6
3 27 27 81 729

x6+3x4+Ex2+§+ 15 + 3 + !
©) 4 16x2 16x*  64x°

(f) 243x° — 405x*y + 270x3* — 90x%y° + 15xy8 — 10

® 56t g T2 it

U oo 403535 21 7 1
(h) x =Tx +21x" - x+x6 11+F—F

MODULE - |
Algebra

Notes ﬁD
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mNotes

. 14 9 4
; _ _

(i) x Tx” +21x
X

G) %—%+6x2 —4x" +x1?
X X

3. (a) (_l)r nCr3n—r X y2r
4. (a) 84x2

(c) —34560 x*y3
(e) —220x%7y°

(g) 34560x%*

(i) —223C,_, x2

6. 5 7.7, 14

35 35 21
=+

7 1

+
x16 x21

(b) nCr x3n—4r

(d) —462y7,462 y*
(f) —61236x!0

(h) (_2)r71 6Cr—1 x77r yrfl

8. 1+ 4y + 10>+ 16)° + 19* + 16y° + 10y° + 497 + 38

9. (@) 1+ 4dx+ 10x% + ...

1 4 10 ,

(c) —t+—2z+—2z" +.....

81 243 729

10. <l:—+—+

(b) 1 —3x+ 6x>—10x> + .....

9 135 , 945 ,
X+—x" ———x
16

x 1 X
1. || <1: ...
3y J-3y 6y=3y  24)% /-3y
1y 5% 5y
12. — =t | y|<2
@ T g T3 3y Y
1 2x 5x? ;
(b) 273 +9X32/3 +81x32/3 |yI<
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Chapter

CARTESIAN OF SYSTEM
COORDINATES

LEARNING OUTCOMES

After studying this chapter, student will be able to:

define Cartesian System of Coordinates including the origin, coordinate
axes, quadrants, etc;

derive distance formula and section formula;

derive the formula for area of a triangle with given vertices;
verify the collinearityofthree given points;

state the meaning of the terms: inclination and slope of a line;
find the formula for the slope of a line through two given points;

state the condition for parallelism and perpendicularity of lines with given
slopes;

find the intercepts made by a line on coordinate axes;

define locus as the path of a point moving in a plane under certain conditions;
and

find the equation of locus under given conditions.

PREREQUISITES

Number system.

| Cartesian System of Coordinates 363
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MODULE - 1l
Coordinate
Geometry

mNotes

e Plotting of points in a coordinate plane
e Drawing graphs oflinear equations.

e Solving systems of linear equations.

INTRODUCTION

The study of geometry began in the third century B.C. the Greek
mathematician Menaechmus (Ca 380-320 B.C) used a method which had a
similarity with the present methods of Coordinate geometry. Apollonius
(262 B.C - 190 B.C) came close to inventing analytic geometry, but could not
do so, as he did not take into account the negative magnitudes. However, the
deceive step in developing coordinate geometry as a subject was taken later
by Descartes and Fermat. Abraham de Moivre (1667-1754) also made

contribution to the development of coordinate geometry.

The study of the branch of mathematics which deals with the interrelationship
between geometrical and algebraic concepts is called coordinate geometry (or)
Cartesian geometry in honour of famous French mathematician Rene Descartes.

In this chapter we shall study the basic conceptys in geometry and its

algebraic representation.

Ml RECTANGULAR COORDINATE AXES

Recall that in previous classes, y

you have learnt to fix the position of
a point in a plane by drawing two
mutually perpendicular lines. The fixed

point O, where these lines intersect

each other is called the origin 0 as
shown in Fig. 9.1 These mutually
perpencular lines are called the co-
ordinate axes. The horizontal line
XOX'is the x-axis or axis of x and
the vertical line YOY” is the y- axis y

or axis of y. Fig. 9.1
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9.1.1 Cartesian coordinates of a point

To find the coordinates of a
point we proceed as follows. Take
X'OX and YOY' as coordinate axes.
Let P be any point in this plane.
From point P draw PA L XOX'
and PB 1 XOY". Then the distance
OA = x measured along x-axis and
the distance OB = y measured along
y-axis determine the position of the
point P with reference to these axes.
The distance OA measured along the
axis of x is called the abscissa or
x-coordinate and the distance OB
(=PA) measured along y-axis is
called the ordinate or y-coordinate
of the point P. The abscissa and
the ordinate taken together are called
the coordinates of the point P. Thus,
the coordinates of the point P are
(x and y) which represent the position
of the point P point in a plane. These
two numbers are to form an ordered
pair beacuse the order in which we
write these numbers is important. In
Fig. 9.3 you may note that the
position of the ordered pair (3, 2)
is different from that of (2, 3). Thus,
we can say that (x, y) and (y, x)
are two different ordered pairs
representing two different points in

a plane.

P (xy)
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MODULE - Il | 9.1.2 Quardrants y
Coordinate 4
Geometry We know that coordinate axes
m XOX’ and YOY” divide the region of Quatran Quadrant
Notes | the plane into four regions. These regions
are called the quardrants as shown in X< >x
Fig. 9.4. In accordance with the 1 S
Quadrant Quadrant

convention of signs, for a point P (X,y)

in different quadrants, we have
I quadrant: x>0,y>0
II quadrant: x<0,y>0 Fig. 9.4
III quadrant: x <0,y <0

IV quadrant: x>0,y <0

8 DISTANCE BETWEEN TWO POINTS

Recall that you have derived y

the distance formula between two

points P (x,, y,) and Q (x,,y,) in the A 0(x,,y,)
following manner:

Let us draw a line / II . XX'
through P. Let R be the point of M
intersection of the perpendicular from
Q to the line /. Then A PQR is a
right-angled triangle.

< iP(r,y) IR
0(0,0) M M:

Fig.9.5
Also PR = Mle

= OM2 — OM1
- XX

and QR = QM, - RM,

- QM, - PM,
~ ON, - ON,
=y2_y1
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Now PQ?= PR? + QR? (Pythagoras theorem)
= (xz - x1)2 + (yz - y1)2

PQ = \/(xz_x1)2+(J’z_y1)2 .

Note: This formula holds for points in all quadrants

Also the distance of a point P(x,))) from the origin 0(0,0)
is OP = /x* +?

Let us illustrate the use of these formulae with some examples.

Example 9.1: Find the distance between the following pairs of points:

) A(14, 3) and B(10, 6) ii) M(~1, 2) and N(0, —6)

Solution:

1) Distance between two points = \/(xz —x1)2 +(, _)’1)2

Here xy =14, y; =3, x, =10, y, =6

. Distance between A and B = \/(1()_14)2 +(6-3)°

=4+ 3y
=+16+9
=25

=5
Distance between A and B is 5 units.

i) Here x, =-1, y,=2, x,=0 and y, = -6

Distance between A and B = \/(O —(-1))* +(-6-2)*

= J1+(-8)> =1+64 = /65

Distance between M and N = \/@ units.
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Example 9.2 : Show that the points P(—1, 1), Q(2, 3) and R(-2, 6)are the

vertices of a right-angled triangle.
PQ?=Q2+1)+B3+1)2=32+4=9+6=25
QR*=(-4)*+(3)*=16+9 =25
and RP?=12+(-72=1+49 =50
PQ? + QR? = 25 + 25 = 50 = RP?
.. APQR is a right-angled triangle (by converse of Pythagoras Theorem)
Example 9.3 : Show that the points A(1, 2), B(4, 5) and C(-1, 0) lie on

a straight line.

Solution: Here, AB = \/(4 —1)* +(5—2)* units
= /18 units

AB = 3\/5 units

BC = y/(-1-4)2 +(0—5)> units
= +/50 units

= 542 units

and AC = \/(_1_1)2+(()_2)2 units
= J4+4 units
= 242 units
Now AB + AC = (3\/§+2\/§) units
= 52 units
= BC

ie., AB+ AC = BC

Hence A, B, C lie on a straight line. In other words, A, B, C are collinear.
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Example 9.4 : Prove that the points (2a, 4a), (2a, 6a) and (2a + \/ga, 54) | MODULE - lI

Coordinate
Geometry

Solution: Let the points be A (2a, 4a), B (2a, 6a) and C(2a+ V3a, 5a) ﬁD
Notes
AB = +/0+(2a) = 2a units

BC = y/(v3a)? +(~a)” units

are the vertices of an equilateral triangle whose side is 2 a.

=/3a® +a’® = 2a units

and AC= \/(x/ga)z +((1)2 = 2a units

= AB + BC > AC
BC + AC > AB and
AB + AC > BC and AB = BC = AC = 2a

= A, B, C form the vertices of an equilateral triangle of side 2a.

e EXERCISE 9.1

1. Find the distance between the following pairs of points.

(a) (5,4)and (2,-3) (b) (a,—a)and (b, b)
2. Prove that each of the following sets of points are the vertices of a right
angled-trangle.
(a) (49 4) (3’ 5) (_19 _1) (b) (29 1): (09 3): (_29 1)

3. Show that the following sets of points form the vertices of a triangle:
(@) (3,3) (-6, 3) and (0, 0)
(b) (0, a) (a,b)and (0,0) (if ab=0)

4. Show that the following sets of points are collinear:
(a) (3,-6)(2,4)and (4, 8) (b) (0,3)(0,—-4)and (0, 6)

5. (a) Show that the points (0,—1) (-2, 3) (6, 7) and (8, 3) are the vertices

of a rectangle.

(b) Show that the points (3,-2) (6, 1) (3,4) and (0, 1) are the vertices of

a square.
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Rl SECTION FORMULA

9.3.1 Internal Division

Let P(x,y)and Q(x,, y,) betwo given points on a line I and
R(x, y) divide PQ internally in the ratio m, : m,
To find: The coordinates x and y of point R.
Construction: Draw PL, QN and RM perpendiculars to XX' from P, Q

and R respectively and L, M and N lie on XX'. Also draw RT 1L QN and
PV 1 QN.

Method: R divides PQ internally in the ratio m : m,.

= R lies on PQ and PR _m
RQ m,
Also, in triangles, RPS and QRT,

ZRPS = ZQRT ((Corresponding angles as PS||RT )

and /RSP = ZQTR=90°

- ARPS ~ AQRT  (AAA similarity)

_PR_RS_PS 0
RQ QT RT N
Also PS =L1LM
= OM - OL
=X - Xx,.
RT = MN = ON - OM
= x,—-X P(x,,y))
RS =RM - SM
= y-y X' » X
QT = QN - TN v
=y, - y

From (i) we have Fig. 9.6

m _X=%5 _Y=Nh

m, Xp—=X )Y~y
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= m(x, —x) = m(x — x)
and ml(yz _y) = mz(y _yl)

mXx, +myXx m +m
1Yo T X
- and y = 1Y2 T )y

=X

Thus, the coordinates of R are:

mx, +myx; my, +my,
9
my + m, m+n

Coordinates of the mid-point of a line segment
If R is the mid point of PQ then,

m, = m, =1 (as R divides PQ in the ratio 1:1)

b

. Coordinates of the mid point are [ >

9.3.2 External Division

Let R divide PQ externally in the ratio m : m,

X+ X J’1+J/2)
> .

To find: The coordinates of R. y
A
Construction: Draw PL, ON R(xy)
and RM perpendiculars to XX'
. Q (x5, 1)
from P, Q and R respectively T
and PSLRMand QT L RM. /—\ml
Clearly, ARPS ~ ARQT P(x,, 1) A S
Re_ps Rs o #
RQ QT RT Ol L. N M
mo_x-x _ Y-y ;/'
or m, X—=X, Y=V, Fig. 9.7
= m, (x —x,)) = my(x — x))
and ml(y_yz):mz(y_yl)
These give: x = D% 7N and y= Yo~ TN
my —my my —
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Hence, the coordinates of the point of external division are

>

[mlxz —hhyX My, —m,)) ]
my —m, my —m,

Let us now take some examples.

Example 9.5 : Find the coordinates of the point which divides the line seg-
ment joining the points (4,-2) and (=3, 5) internally and externally in the ratio
2:3.

Solution: Let P(x, y) be the point of internal division.

LA 6 25)+3D) 4
243 5 and Y 243 5

: 6 4
P has coordinates 5

If Q(x', ") is the point of external division, then

,_2(3)-34) _  _20)-3(=2) _
X —2—_3—1831'1(1 y 23

-16

Thus, the coordinates of the point of external division are (18, —16).

Example 9.6 : In what ratio does the point (3, —2) divide the line segment
joining the points (1,4) and (-3, 16)?

Solution: Let the point P(3, —2) divide the line segement in the ratio 4 : 1.

=3k +1 l6k+4}

Then the coordinates of P are ,
k+1 k+1

But the given coordinates of P are (3, —2)

. =3k +1 _3
k+1

= —3k+1=3k+3

P
= P73

= P divides the line segement externally in the ratio 1:3 .
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Example 9.7 : The vertices of a quadrilateral ABCD are respectively (1, 4),
(-2,1), (0, —1) and (3,2). If E, F, G, H are respectively the midpoints of AB,
BC, CD and DA, prove that the quadrilateral EFGH is a parallelogram.

Solution : Since E, F, G, and H, are the midpoints of the sides AB, BC, CD
and DA, therefore, the coordinates of E, F, G, and H respectively are:

1-2 4+1) (=240 1-1)(0+3 —1+2 143 442
27 2 )0 2 72 N )

= E[_?l, %) , F(-1, 0), G(%, %J and H(2, 3) are the required points.

Also, the mid point of diagonal EG has coordinates

3s
2 22 2(_(13
2 72 272
Coordinates of midpoint of FH are
-1+2 0+3)_(1 3
2 7 2 272

Since, the midpoints of the diagonals are the same, therefore, the diago-

nals bisect each other.

Hence EFGH is a parallelogram.

e EXERCISE 9.2

1. Find the midpoint of each of the line segements whose end points are
given below:

(@) (-2,3)and (3, 5) (b)(6, 0) and (-2, 10)
2. Find the coordinates of the point dividing the line segment joining

(-5, —2) and (3, 6) intemallyin the ratio 3:1.

3. (a) Three vertices ofa parallelogram are (0,3), (0,6) and (2,9). Find the
fourth vertex.
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(b) (4,0),(-4,0),(0,—4) and (0,4) are the vertices of a square. Show that
the quadrilateral formed by joining the midpoints of the sides is also a

square.

4. The line segementjoining (2,3) and (5, —1) is trisected. Find the points

of trisection.

5. Show that the figure formed by joining the midpoints of the sides of a

rectangle is a rhombus.

B AREA OF A TRIANGLE

Let us find the area of a oy A(x, )

triangle whose vertices are # / >
=3 C(x39y3)

A(x,. y), B(x, y,) and L —

C(x,, y,) Draw AL, BM and ' gB(ngyz)
' H
CN perpendiculars to XX' X5 Iy LN —X
Area of AABC. y
Fig.9.8

= Area of trapzium. BMLA + Area oftrapzium. ALNC —
Area oftrapzium. BMNC

= %(BM+AL)ML + %(AL+CN)LN —%(BMJrCN)MN

= % (J/Q +y1)(x1 —Xy)+ %(yl +13)(x; —xl)—%(yz +13) (6 —x5)

1
= 5[(%)’2 — X))+ (X053 = X30,) + (X3 — x3y3)]

1
= E[xl (V2= y3) + % (y3 = y)+x3(y = ,)]
This can be stated in the determinant form as follows:

1x1 nol
Area of AABC = ) X, vy, 1

X3 V3
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Example 9.8 : Find the area of the triangle whose vertices are A(3, 4),
B(6, —2) and C(-4, -5).

3 4 1

. e 21
Solution: The area of AABC =

214 =5 1

- % [3(-2+5)-4(6+4)+1(-30-8)]

- Lo-40-38=-&
2 2

As the area is to be positive

69
. Area of AABC = ~ square units.

Example 9.9: If the vertices ofa triangle are (1, k), (4, —3) and (-9,7) and

its area is 15 square units, find the value( s) of .

11 ko1
Solution: Area of triangle = —[4 -3 1
-9 7 1
= %[—3—7—k(4+9)+l(28—27)]
1
= — [-10-13k +1]
2
- L-9-134]
2

Since the area of the triangle is given to be 15,

—9—213k 15
or, -9 — 13k =30
- 13k =39
or, k= -3.
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" EXERCISE 9.3

1.

Find the area of each of the following triangles whose vertices are given

below:
(@) (0,5)(5,-5)and (0, 0)
(b) (2,3),(-2,-3)and (-2, 3)
(¢) (a,0)(0,—a)and (0, 0)
The area of a triangl e ABC, whose verti ces are A(2,-3), B(3, -2) and

3
C(%’ kj is 584 unit. Find the value of £.

Find the area of a rectangle whose vertices are (5, 4) (5, —4) (-5, 4)

and (-5, —4).

Find the area of a quadrilateral whose vertices are (5, -2), (4, —7)

(1, 1) and (3, 4).

B) CONDITION FOR COLLINEARITY OF THREE
POINTS

The three points A(x, y), B(x,, y,) and C(x,, y,)are collinear if and only

if the area of the triangle ABC becomes zero.

) 1

ie., 5|X1Y2 XY T XYy T X3 T XY XY | =0
Le., XYy — XV XY =XV iy —xy; = 0
In short, we can write this result as

x|
X ¥ 1I1=0

x5 0y 1

Let us illustrate this with the help of examples:
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Example 9.10: Show that the points A(a, b+c), B(b, cta) and C(c, a + b)

are collinear.

. a b+c 1
Solution: Area of triangle ABC = 5 b c+a 1

c a+b 1

at+b+c b+c 1

%a+b+c c+a 1
at+b+c a+b 1

. 1 b+c 1
E(a+b+c) I c+a 1=0
I a+b 1

Hence the points are collinear.

Example 9.11 : For what value of %, are the points (1, 5) , (k, 1) and

(4, 11) collinear?

Solution: Area of the triangle formed by the given points is

1 5 1
=lk I 1

2
4 11 1

:%[—10—5k+20+11k—4]

:%[6k+6]:3k+3

Since the given points are collinear, therefore
< 3k+3=0= k=-1.

Hence, for k£ = —1, the given points are collinear.
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1. Show that the points (—1, —1) (5, 7) and (8, 11) are collinear.

(@ Notes

2. Show that the points (3, 1), (5, 3) and (6, 4) are collinear.

1 1
3. Prove that the points (a, 0), (0, b) and (1, 1) are collinear if _+Z =1.
a

4. If the points (a, b), (a;, by) and (a — a, b — b,) are collinear, show that
a\b=ab,.
5. Find the value ofk for which the points (5, 7), (k, 5) and (0, 2) are

collinear.

6. Find the values ofkforwhich the point (k, 2-2k) (—k + 1, 2k) and
(—4 — k, 6-2k) are collinear.

NN INCLINATION AND SLOPE OF A LINE

Look at the Fig. 9.9. The line AB makes an angle or © + o with the

x-axis (measured in anticlockwise direction).

The inclination of the given line is represented by the measure of angle
made by the line with the positive direction of x -axis (measured in anticlockwise
direction)

In a special case when the line is parallel to x-axis or it coincides with

the x-axis, the inclination of the line is defined to be 0°.

o B
a
¥ s X
Oly \/A i oly TNES
. (@) (b) 4
Fig.9.9
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Again look at the pictures of two mountains given below. Here we notice
that the mountain in Fig. 9.10 (a) is more steep compaired to mountain in

Fig. 9.10 (b).

(a) (b)
Fig.9.10
How can we quantify this steepness? Here we say that the angle of inclination
of mountain ( a) is more than the angle of inclination of mountain (b) with the

ground.

Try to see the difference between the ratios of the maximum height from

the ground to the base in each case.

Naturally, you will find that the ratio in case (a) is more as compaired
to the ratio in case (b). That means we are concerned with height and base
and their ratio is linked with tangent of an angle, so mathematically this ratio
or the tangent of the inclination is termed as slope. We define the slope as

tangent of an angle.

The slope of a line is the the tangent of the angle 8 ( say) which the line
makes with the positive direction of x -axis. Generally, it is denoted by m (=

tan 0 )

Note: If a line makes an angle of 90° or 270° with the x-axis, the slope of

the line can not be defined.
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Example 9.12: In Fig. 9.9 find the slope oflinesAB and BA.
Solution: Slope of line AB = tan a
Slope of line BA =tan (m + o) = tan a.

Note: From this example, we can observe that “slope is independent of the

direction of the line segement”.

Example 9.13 : Find the slope of a line which makes an angle of 30° with

the negative direction of x-axis.

yA
Solution:
Here 6 = 180° — 30° = 150° B
‘\. 180°=30"
m = slope of the line A > X
~d
= tan(180° — 30) \\\\\\\\
0 1 A
= —tan 30’ = —= v
NE) y
Fig. 9.11

Example 9.14 : Find the slope of a line which makes an angle of 60° with

1\

Bx60
\92";60"

xv: ) A\ » X

the positive direction of y-axis. y

Solution : Here 6 = 90° + 60°
m = Solpe of the line
= tan(90° + 60°)

= — cot 60°
= — tan 30°

_ -l

=5 y'}

Example 9.15 : If a line is equally inclined to the axes, show that its slope
is +1.

Fig. 9.12

Solution:Let a line AB be equally inclined to the axes and meeting axes at

points A and B as shown in the Fig. 9.13.

Cartesian System of Coordinates Jill




[ 311 Mathematics Vol-|(TSOSS) |

~ y'a
=B
B
A A5 R 135
x© / 0 X X'<7 L0 A\ X"
& ®)
Fig. 9.13

In Fig 9.13(a), inclination of line AB = /XAB =45°
Slope of the line AB = tan 45°=1
In Fig. 9.13 (b) inclination of line AB = £ZXAB = 180° — 45°
. Slope of the line 4B = tan 135°
= tan (180° — 45% = —tan 45° = —1

Thus, if a line is equally inclined to the axes, then the slope of the line

will be + 1.

0 EXERCISE 9.5 Lo

1. Find the Slope of a line which makes an angle of i) 60 0 ii) 1500 with

the positive direction of x-axis.

2. Find the slope of a line which makes an angle of 309 with the positive

direction of y-axis.

3. Find the slope of a line which makes an angle of 60° with the negative

direction of x-axis.
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@ SLOPE OF A LINE JOINING TWO
DISTINCT POINTS

Let A(x,, y,) and B(x,, y,) be two distinct points. Draw a line through

A andB and let the inclination of this line be 8. Let the point of intersection
of a horizontal line through A and a vertical line through B be M, then the

coordinates of M are as shown in the Fig. 9.14.

y y
A A

B(xzyyZ)
A(xpyl) (xzsyl)

9M

. » X

Fig. 9.14

(A) InFig9.14 (a), angle of inclination MAB is equal to 6 (acute). Conse-
quently.

MB —
tan 0 = tan(éMAB) S u

(B) InFig.9.14 (b), angle of inclination® is obtuse, and since® and /MAB

are supplementary, consequently,

—-MB _ _
tan 0 = —tan (/MAB) = Vi __0a=w) _»men

Hence in both the cases, the slope m of a line through A(x, y,) and
B(x,, y,) is given by
V2= N

m=~=——

X7
Note : If x, =x, then m is not defined. In that case the line is parallel to

y-axis.
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Is there a line whose slope is 1?7 Yes, when a line is inclined at 43 with

the positive direction of X-axis.

Is there a line whose slope is /3 ? Yes, when a line is inclined at 60°

with the positive direction of x-axis.

From the answers to these questions, you must have realised that given
any real number m, there will be a line whose slope is m (because we can

always find an angle a such that tan oo =m).
Example 9.16 : Find the slope of the line joining the points A(6, 3) and
B( 4, 10).

Solution: The slope of the line passing through the points

Yo =N
(x,y) and (x, y,) = o —x

Here, x =6,y =3;x,=4,y,=10

Now substituting these values, we have slope = 10-3 = _Z.

4-6 2
Example 9.17 : Determine x, so that the slope of the line passing through
the points (3, 6) and (x, 4) is 2.

Yo=3 _4-6_ 2

Solution: Slope =

=2 ...(Given)

S 2x—6=—2 or x=2

] L L A —

1. What is the slope of the line joining the points A(6, 8) and B(4, 14)?

2. Determine x so that 4 is the slope of the line through the points
A(6, 12) and B(x, 8).
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3. Determine y, if the slope of the line joining the points A(-8, 11) and

B(2, ) is _%.

4. A(2,3), B(0,4)and (-5, 0) are the vertices of a triangle ABC. Find

the slope of the line passing through the point B and the mid point of

AC

5. A(-2,7),B(1,0), C(4, 3) and D(1, 2) are the vertices of a quadrilateral

ABCD. Show that

(1) slope of AB =slope of CD

(i) slope of BC =slope of AD

KB CONDITIONS FOR PARALLELISM AND
PERPENDICULARITY OF LINES

9.8.1 Slope of Parallel Lines

Let [, I, be two (non-
vertical) lines with their slopes
m, and m, respectively. Let 0,
0, be angles of inclination of

these resepectively.

Case 1 : Let the lines l]

and /, be parallel
Then 6 = 0,

= tan 91 = tan 92

= m1=m2

Fig. 9.15

Thus, if two lines are parallel then their slopes are equal.
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Case 2: Let the lines /, and [, have equal slopes.
ie, m =m, = tan 0 = tan 0,
= 0,=0, (0° < 6 < 180°%

= 1,111,

Hence, two (non-vertical) lines are parallel if and only if m =m,.

9.8.2 SLOPES OF PERPENDICULAR LINES

Let /| and [, be two (non-vertical)lines with their slopes m and m,

respectively. Also let 0, and 0, be their inclinations respectively.

Yy
A

- 92 y
= X o7 AW
v (@ v (b)
Fig. 9.16
Case-I: Let [ L [
= 0,=90°+0, or 0 =90°+0,

= tan 0, = tan (90 + 0) or tan 6, = tan(90° + 0))

= tan 0, = —cot 0)) or tan 0, = —cot 0,
1 1
= tan 0,= - or tan 0, = —
tan 0, tan 6,

— In both the cases, we have
tan 0, tan 0, = -1

or m, m, = -1

Thus, if two lines are perpendicular then the product of their slopes is

equal to —1.
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MODULE =1l Case - 11 :
Coordinate
Geometry Let the two lines /, and [/, be such that the product of their slopes
m is —1.
Notes .
1.e., m, m, = —1
= tan 0, tan 0, = —1
tan 0 = — a0, = —cot 0, = tan(90° + 0,)

— Either 6,= 90"+ 0, and 6,=90"+ 0,

In both cases llJ_ 12

Hence, two (non-vertical) lines are perpendicular if and only if

Example 9.18 : Show that the line passing through the points A(5, 6) and
B(2, 3) is parallel to the line passing, through the points C(9, —2) and

D(6, -5).
. . 3-6 -3
Solution: Slope of the line AB = 5 s = 3 =1
d slope of the line CD = —= = = =1
and slope of the line c_9 3

As the slopes are equal
. AB || CD.

Example 9.19 : Show that the line passing through the points A(2, —-5) and
B(-2, 5) is perpendicular to the line passing through the points L( 6,3) and
M(1,1).

Solution: Here

545 10 -5

m, = Slope of the line AB = —=
-2-2 -4 2
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1-3 2
and m, = slope of the line LM = — = —
1-6 5
- 2
Now ml,mzz_sx_:_l
2 5

Hence, the lines are perpendicular to each other.

Example 9.20 : Using the concept of slope, show that A(4,4), B(3,5) and
C are the vertices of a right triangle.

5-4

Solution: Slope of line AB = m, = 34" -1
Slope of line BC = m, = L
-1-3
. -1-4
and Slope of line AC = m, = 2 =1

Now m, x m, = -1
= AB L AC
= AABCis a right-angled triangle.
Hence, A( 4,4), B(3,5) and C(—1, —1) are the vertices of right triangle.

Example 9.21 : What is the value of y so that the line passing through the
points A(3, y) and B(2,7) is perpendicular to the line passing through the
point C(-1, 4) and D(0, 6) ?

|

Solution: Slope of the line AB = m = 2;4 =y-7
. 6—
Slope of the line CD =m, = 0l =2

+
—

Since the lines are perpendicular,
m, x m, =-1
or -7 x 2=-1
or 2y - 14 = -1

or 2y =13
13
or y =?
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il I EXERCISE 9.7 T
Coordinate

Geometry

mNotes

. Show that the line joining the points (2, —3) and (-4, 1) is

(1) parallel to the line joining the points (7,—1) and (0, 3)

(i) perpendicular to the line joining the points (4, 5) and (0,-2).

. Find the slope of a line parallel to the line joining the points €4, 1) and

2, 3)

. The line joining the points (-5, 7) and (0, —2) is perpendicular to the

line joining the points (1, 3) and (4, x). Find x.

. A(-2,7),B(1,0), C(4, 3) and D(1, 2) are the vertices of quadrilateral

ABCD. Show that the sides of ABCD are parallel.

. Using the concept of the slope ofa line, show that the points A(6, —1),

B(5, 0) and C(2, 3) are collinear. [Hint: slopes of AB, BC and CA must
be equal.]

. Find £ so that line passing through the points (k, 9) and (2,7) is parallel

to the line passing through the points (2, —2) and (6, 4).

. Using the concept of slope of a line, show that the points (-4, —1),

(-2, —4), (4, 0) and (2, 3)taken in the given order are the vertices of

a rectangle.

. The vertices ofa triangle ABC are A(-3, 3), B(-1, —4) and C(5, —-2),

M and N are the midpoints of AB and AC. Show that MN is parallel

1
to BC and MN = EBC'

AN INTERCEPTS MADE BY A LINE ON AXES

If a line / (not passing through the Origin) meets x-axis at A and y-axis

at B as shown in Fig. 9.17, then
(1) OA is called the x-intercept or the intercept made by the line onx-axis.

(i) OB is called y-intercept or the intercept made by the line on y-axis.
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(i) OA and OB taken together in this
order are called the intercepts

made by the line / on the axes.

(iv) AB is called the portion of the line

intercepted between the axes.

(v) The coordinates of the point A on

v

x-axis are (a, 0) and those of point
B are (0, b)

Fig. 9.17

To find the intercept of a line in a given plane on x-axis, we put y =0
in the given equation of a line and the value of x so obtained is called the x
intercept.

To find the intercept of a line on y-axis we put x = 0 and the value of

v so obtained is called the y intercept.

Note:
1. A line which passes through origin makes no intercepts on axes.

2. A horizontal line has no x-intercept and vertical line has no y-inter-

cept.

3. The intercepts on x- axis and y-axis are usually denoted by a and

b respectively. But if only y-intercept is considered, then it is usually

denoted by c.

Example 9.22 : If a line is represented by 2x + 3y = 6 find its x and y

intercepts.
Solution: The given equation of the line is
2x + 3y =6 e (1)
Putting x = 0 in (1), we get
y=2

Thus, y-intercept is 2.
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Again putting y =0 in (i), we get
2x=6 = x=3

Thus, x-intercept is 3.

EXERCISE 9.8

1. Find x andy intercepts, if the equations of lines are:

) x+3y=6 i) 7x+3y=2 (i) 24+ =1
(M) Y (i) Y ( )2a 5

Y 2
@iv) ax + by =c (V) E—zng (vi) g_?x=7

R} LOCUS OF A POINT

9.10.1 DEFINITION OF THE LOCUS OF A POINT

Locus of a point is the path traced by the point when moving under a
given condition or conditions. Thus, locus of a point is a path of definite shape.

It may be a straight line, circle or any other curve.

For Example: (i) The locus of a point in a plane which moves such that it
is at constant distance from a fixed point in the plane is a circle as shown in

Fig. 9.18 (a).

Ya .
-
A ¢ METIR
N Ol X
v
@ (o) ©
Fig. 9.18

(i) The locus of a point which moves such that it is always at a constant
distance from x-axis is a pair of straight lines parallel to x-axis. [See
Fig. 9.18 (b)]

Cartesian System of Coordinates |l




[ 311 Mathematics Vol-|(TSOSS) |

(i) The locus of a point in a plane which moves such that it is always at a
constant distance from the two fixed points in the same plane is perpendicular
bisector of the line segment joining the two points. [See Fig. 9. 18(¢)].

From the defmition and the examples of a locus, we observe that

(a) Every point which satisfies the given condition or conditions is a point on
the locus.

(b) Every point of the locus must satisfy the given condition or conditions.

9.10.2 EQUATION OF LOCUS

The equation of locus of a moving point (x,y) is an algebraic relation
between x and y satisfying the given conditions of motion of a point.

The coordinates (x,y) of the moving point which generates the locus are
called current coordinates. The point covers all the positions on the locus and
is called the general point.

Let us take an example:

Let P( 4,3) and Q(7, 11) be two points. Let us try to locate a point R
which is equidistant from both the points P and Q.

Let the Coordinates of R be (x,)).

Then PR = \/(x—4)2 +(y—3)> = /x> + % —8x— 6y +25

QR = J(x =77 +(y—1)* = > +3* —14x—22y+170
PR = QR

X2+ 97 —8x—6y+25 = \[x* + 7 —14x =22y +170
Squaring, we get
X+ =8x — 6y +25=x>+)* — 14x — 22y + 170
= 6x + 16y — 145 = 0

This is called the equation of the locus of a point R which is equidistant
from the points P and Q.

From the above, we observe the following working rule.
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9.10.3 WORKING RULE TO FIND THE EQUATION OF
THE LOCUS OF A POINT

(1) Take any point (x, y) on the locus.

(i) Write the given geometrical form in the terms of x and y and known

constant or constants and simplify it, if necessary.

(1) Express the given condition in mathematical form in the terms ofx and

y and known constant or constants and simplify it, if necessary.
(iv) The equation so obtained is the equation of the required locus.

Example 9.23: Find the equation of locus of points which are thrice as far

from (—a, 0) as from (a, 0).

Solution: Let P(x, y) be any point on locus. Also let A(—a, 0) and B(a, 0)
be the two given points. P(x, y)

Then by the given condition.

PA = 3PB B(a.0)
PA2 = 9PB?
= (x+a)l+y"=9[(x —a)’+)?)] A(-a,0)
Fig. 9.19

= x?+ 2ax + a* +)? = 9[x* - 2ax + a* + )?]
= 8x* —20ax + 8a* + 8 =0

Thus, 2x? + 2)*— Sax + 2a*> = 0. is the required equation of the locus.

Example 9.24 : Find the equation of the locus of a point such that the sum
of its distances from (0, 2) and (0, —2) is 6.

P(x, y)

/ \
Fig. 9.20
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Solution: Let P(x,y) be any point on the locus. Also let A(0,2) and B(0,-2)
be the given points.

From the given condition, we have

PA+PB =6

\/x2+(y—2)2 + \/x2+(y+2)2 =6

or \/x2+y2—4y+4=6—\/x2+y2+4y+4

Squaring both sides, we get

P4y —4y+4=36+x7+ )2 +4y+4—12x> + 7 +4y+4

or 8y—36=—12x*+ )’ +4y+4

or 2y+9=3\/x2+y2+4y+4
Squaring both sides again, we get
2y + 97 =9 + ) + 4y + 4)
or 4y? + 36y + 81 = 9x* + 9)? + 36y + 36
or 9x? + 4y* = 45.
which is the required equation of the locus.

Example 9.25: A(3, 1) and B(-2, 4) are the two vertices of a triangle
ABC. Find the equation of the locus of the centroid of the triangle, if the third

vertex C is a point of the locus whose equation is 3x — 4y = 8.

Solution: Let C(a,b) be the third vertex of the triangle ABC. Since Cg,b) lies
on the locus whose equation is 3x — 4y = 8.
3a —4b =38 e (1)
Let (&, k) be the centroid of the triangle ABC.

_3-2+a _1+4+b

h and k

= a=3h—-1and b=3k-5
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Substituting these values of a and b, we get
33h— 1) — 43k 5) =28
= 3h—4k+3=0
Hence, the locus of the point G (4, k) is 3x —4y+3 =0

Example 9.26:(2, —2) is a point of the locus whose equation is y* = ax If

(8, b)is also a point of locus, find b.
Solution: Since (2, -2) is a point of the locus whose equation is y* = ax
L (-2Y=2a = a=2
The equation of the locus is )? = 2x .
As (8, D) is also a point of this locus
b*=2x8
= b* =16 = b=+4

. Hence, the value of b = +2.

e EXERCISE 9.9 S

1. Find the locus of a point which is equidistant from the points (3, 4) and
(_47 6)

2. Find the locus of a point equidistant from the points (4,2) and the x-axis.

3. Find the equation of locus ofa point which moves so that the distance

from the point (4,1) is twice its distance from the point (1,5).

4. A (2,3) and B (0,2) are the coordinates of the two vertices of a triangle.
Find the locus of a point P such that the area of the triangle PAB =3

sg. units.

5. Find the equation of the locus of a point which moves so that the sum

of the squares of its distances from the point (2,3) and (-3, 4) is 16.

6. Find the locus of a point which moves such that the sum of its distances
from the points (3,0) and (-3,0) is less than 9.
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7. If (h, 0) is a point of the locus whose equation is x% + y? — 6x + 8y
-36 =0.

3
8. If (E ) —2j is a point of thelocus whose equation is y? = ax find

b if (b, 6) is also a point of the locus.

k8 TRANSFORMATION OF AXES
LEARNING OUTCOMES

A plane extends infinitely in all directions. By drawing X-axis and Y-

axis, and dividing the infinite plane into four quadrants, we represent any point

in the plane as an odered pair of real numbers.

It is to be noted that these axes can be chosen arbitrarily and therefore
the position of these axes in the plane is not fixed. They can be changed
When the position of axes is changed, the coordinates of a point also get changed
correspondigly. Consequently equations of curves will also be changed. This
process of transformation of axes will be of great advantage to solve some

problems very easily.
The axes can be transformed or changed usually in the following ways:
(1) Translation of axes
(i) Rotation of axes
(i) Translation and rotation of axes.
9.11.1 Translation of Axes
9.11.1.1 Definition [Translation of Axes]

The transformation obtained, by shifting the origin to a given different
point in the plane, without changing the directions of coordinate axes therein

is called a translation of axes.
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MODULE - Il | 9.11.2 Changes in the coordinates by a translation of axes
Coordinate
Geometry Let OX, OY be the given coordinate axes. Suppose the origin O is

mNotes shifted to O’ = (h, k) by the translation of the axes (Q'X’,0'Y’. Let
O’X’, O'Y’ be the new axes as shown in the figure below. Then with refer--

ence to O’X’, 'Y’ the point O' has coordinates (0, 0).
AY Y’ AP

0] L N
Y Fig. 9.21

Let P be a point with coordinates (x, y) in the system OX, OY and with
coordinates (x'y’) in the system ﬁ(’, oY'.
Then O'L =%k and OL =/
Now, x = ON = OL + LN
= OL + O'M
=h+x'
and y=PN =PM + MN
=PM + O'L
=y +k
Thus, x=x"+h,y=y"+k

or xX'=x—-h,y'=y-—h
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9.11.3 Note
If the origin is shifted to (4, k) by translation of axes, then,

(1) the coordinates of a point P(x, y) are transformed as P(x — A4, y — k)

and,

(1) the equation f(x, y) = 0 of the curve is transformed as fix'+ &, y' +
k) = 0.

9.11.4 Examples
Example 1

When the origin is shifted to (=3, 5) by translation of axes, let us find

the coordinates of (2, 4) with respect to the new axes.
Sol : Here (4, k) = (-3, 5)
Let (x, y) = (2, 4) be shifted to (x', y") by the translation of axes.
Then (x, y)=(x—-h,y -k =2 -(-3),4-5)
=G, -1
Example 2

When the origin is shifted to (3, 1) by the translation of axes, let us find

the transformed equation x? + 4xy + 6)? = 0.
Sol : Here (h, k) = (3, 1)
We get x=x"+3 and y =y'+ 1 in the given equation.
e, (x+3P2+4x'+3)O+1D)+6(0p'+1)2=0
On simplifying the above equation, we get
x?+4x Yy +6yr+10x" +24p'+27=0

This equation can be written (dropping dashes) as :

x2 + 4xy + 6y + 10x + 24y + 27 = 0.
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Geometry
m 9.12.1 Definition (Rotation of Axes)
Notes

The transformation obtained, by rotating both the coordinate axes in the
plane by an equal angle, without changing the position of the origin is called

a Rotation of axes.

9.12.2 Changes in the coordinates when the axes are Rotated Through
an Angle '0’

Let P = (x, y) with reference to the axes OX, OY . Let the axes be
rotated through an angle '0' in the positive direction about the origin O, to
get the new system OX’, OY’ as shown in figure. With reference to the new
axes 0OX', OY', and P(x', y") .

vy

L Q

Fig. 9.22 Rotation of axes

Since the angle of rotation is '0', we have

|XOX' =|YOY' =6
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MATHEMATICS

Let L, M be the feet of the perpendiculars drawn from P upon OX,0X’.

The angle between the two straight lines is equal to the angle between their

perpendiculars.
Hence, |LPM =|XOX'=0
Let N be the foot of the perpendicular from M to PL
Now, x=OL=0Q -LQ
= 0Q - NM
= OM cos 6 — PM sin 0
=x"cos 0 —y'sin O (D)
Also y=PL=PN + NL
= PN + MQ
= PM cos 6 + OM sin 0
=y'cos 0 — x'sin O ..(2)
Therefore
x=x"cos O —y'sin 0
y=x"sin O + y'cos 0 ..(3)
From the above equations, the values of x', y’' can be found as :
x'"=xcos 0+ ysin 0
y'=-xsinO +ycos0 ..(4)

The results in (3) & (4) can be easily remebered by the following table
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x! yV
X cosO —sin O
y sin O cos 0

9.12.3 Note

When the axes are rotated through an angle '0' then
1) the coordinates of a point P(x, y) are transformed as
P(x', y") = P(x cos O + y sin 6, — x sin 6 + y cos 0) and
i) the equation f{x, y) = 0 of the curve is transformed as :
fix"'cos ® —y'sinB, x'sin O + y'cos ) =0
Example 3

Let us find the coordinates of P(-1, 2) with reference to the new axes,

when the axes are rotated through an angle of 60°.

Sol : Let P(x, y) = (-1, 2) and (x', y') be the coordinates of P in the new

system.
) 1 3 243-1
x'=(—1)c0s60°+2(s1n600)=——+2£= 3
2 2 2
V3 1) 3+2
y'=—(=1) sin 60° + 2 cos 60° = -t 2(Ej= 5

\9)

Therefore, the new coordinates of P are : ( 5

243-1 \/§+2]

Example 4:

The origin is shifted to (1, 6) by the translation of axes. If the coordi-
nates of the point P changes to (3, 5), find the coordinates of 'P' in the original

System.

Cartesian System of Coordinates Jill




[ 311 Mathematics Vol-|(TSOSS) |

Sol : Here (h, k)=(1,6); (x"y)=(@3,5)
Let the required point to P(x, y)
then x=x"+h=3+1=4
y=y'+k=5+6=11
. The coordinates of P in the original system are :
P(x, y) = P(x'+ h, y' + k) =P@4, 11).
Example §

When the axes are rotated through an angle 60°, the new coordinates

of a point P is (3, 4), then find the original coordinates of P.
Sol : Here (x', y") = (3, 4); 0 = 60°
Let the coordinates of P in original system be P(x, y).
Then, x =x'cos © —y'sin O

x =3 cos 60° — 4 sin 60°

3 43 _3-483

2 2 2

Also y =x'sin 0 + y'cos 0

= 3sin 60° + 4 cos 60°

_ {?}4‘[1): 33 +4

2 2

". The coordinates of P in the original system

_ (3—4% 3J§+4]

2 2
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Note :

1. The point to which the origin is to be shifted by the translation of axes

so as to remove the first degree terms form the equation :

hf —bg gh—afj.

ax?>+ 2hxy + by? + 2gx + 2fy + ¢ =0 where h* % ab is =, 5
ab—h" ab-h

2. The point to which the origin is to be shifted by the translation of axes

so as to remove the first degree terms from the equation

ax* + by* + 2gx + 2fy + ¢ = 0 where a #0, b=0 is (i,%j
a

3. The angle through which the axes are to be rotated to remove X)' term

from the equation ax® + 2hxy + by? = 0, is :

0 = lTan_]( 2h j if azb

2 a-—b

=z if a=b
2 , if a=>a.

. EXERCISE 9.10 S

1. The origin is shifted to (2, 3) by the translation of axes if the coordinates

of the point P changes as:
(i) (0,0) (i) (4,-3)
Also, find the coordinates of 'P' in the original system.

2. When the origin is shifted to (4,—5) by the translation of axes, find the
coordinates of the following points with reference to the new axes.
(i) (=2, 4) (i) 3,2) (iii) (0, 3)

3. Find the point to which the origin is to be shifted so that the point
(5, —1) may change to (4, 3).
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4. Find the point to which the origin is to be shifted so as to remove the MODUL_E -l
_ Coordinate
first degree terms from the equation : 4x* + 9y — 8x + 36y + 4 =0. | Geometry

5. When the axes are rotated through an angle 300, find the new coor- N ﬁD
otes
dinates of the following points :
1) (0,5) (i) (=2,4) (ii1) (0, 0)
6. When the origin is shifted to the point (2, 3), the transformed equation
of a curve is x> + 3xy — 2> + 17x — 7y — 11 = 0. Find the original
equation of the curve.
7. If the point P changes to (4, —3) when the axes are rotated through an

angle of 135°, find the coordinates of P with respect to the original system.

T
8. When the axes are rotated through an angle 1 find the transformed

equation of 3x? + 10xy + 3y? =

KEY WORDS

e Distance between any two points (x, y,) and (x5, y,) is

\/(xz _x1)2 +(, _J’1)2

e Coordinates of the point dividing the line segment joining the points

(xy, ;) and (x,, y,) internally in the ratio m; : m, are

(mlxz +myX, myy, + mzyl\

b

e Coordinates of the point dividing the line segment joining the the points

(x;, yy) and (x,, y,) externally are in the ratio m; : m, are

b

(mlxz —myXy MY, =My ]
m; —m, m-—n

e Coordinates of the mid point of the line segment joining the points

N+tx ntr»
(xy, ¥y) and (x,, y,) are [ > 5 j

M| Cartesian System of Coordinates
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The area of a triangle with vertices (x, y;), (x5, ¥,) and (x3, y3) is
given by

1
E[(xlb =%V + (503 = X3,) + (50 = x3)]
Three points A, B, and C are collinear if the area of the triangle formed

by them is zero.

If O is the angle which a line makes with the positive direction of x-axis,
then the slope of the line is m = Tan 0.
Slope (m) of the line joining A(x, y;) and B(x,, y,) is given by

Yo =N
Xy =X

m =

A line with the slopem; is parallel to the line with slopem, if m; = m,.

A line with the slope m, is perpendicular to the line with slope m, if
my; X my = —1.
If a line / (not passing through the origin) meetsx- axis at A and y- axis

at B then OA is called thex- intercept and OB is called the y- intercept.

Locus of a point is the path traced by it when moving under given condition

or conditions

If the origin is shifted to (4, k) by translation of axes, then

(1) The co-ordinates (x, y) of a point P are transformed as (c — 4, y — k) and

(i) The equation f{x, y)=0 of the curve is transformed as
fx'"+h,y' +k=0

If the axes are rotated through an angle '0' then

(1) The coordinates (x,y)of a point P are transformed as (x', y") = (x cos
0+ ysinO,—xsin O+ ycos 0) and

(1) The equation f(x, y) =0 of the curve is transformed as

fix"cos O —y'sin B, x"sin B + y'cos ) = 0.
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SUPPORTIVE WEB SITES MODULE - i
Coordinate

o Geometry
http : //www.wikipedia.org
http:// math world . wolfram.com Notes ﬁD
PRACTICE EXERCISE

1. Find the distance between the pairs of points:

(a) (2,0)and(1, cot 0) (b) (—sinA, cos A) and (sin B, cos B)
2. Which of the following sets of points form a triangle?
(@) (3,2),(-3,2)and (0, 3) (b) (3,2),(3,-2)and (3, 0)
3. Find the midpoint of the line segment joining the points (3, —5) and
(-6, 8).
4. Find the area of the triangle whose vertices are:
(@) (1,2),(-2,3), (-3,-4) (b) (c,a),(cta,a),(c—a,a)

5. Show that the following sets of points are collinear (by showing that area

formed is 0).

@) (-2,5),(2,-3)and (1,0)  (b) (@, b+c), (b, c+a)and(c,a+b)

a

If (-3, 12), (7, 6)and (x, a) are collinear, find x.

7. Find the area of the quadrilateral whose vertices are (4, 3), (-5, 6),
(0, 7) and (3, — 6) .

8. Find the slope of the line through the points
(a) (1’ 2)5 (4a 2) (b) (4a - 6)5 (_ 2a - 5)
9. What is the value of y so that the line passing through the points (3, y)

and (2, 7) is parallel to the line passing through the points (-1, 4) and
(0, 6)?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Without using Pythagoras theorem, show that the points (4, 4), (3, 5)

and (-1, —1) are the vertices of a right-angled triangle.

Using the concept of slope, determine which of the following sets of
points are collnear:

(1) (_23 3)5 (89 _5) and (53 4) (11) (Sa 1)9 (19 _1) and(lla 4)

If A(2,-3) and B(3, 5) are two vertices ofarectangle ABCD, find the
slope of

(1 BC (i) CD (iii) DA

A quadrilateral has vertices at the points (7, 3), (3, 0), (0, -4) and

(4, —1). Using slopes, show that the mid-points of the sides of the quadrilatral

form a parallelogram.

Find the x-intercepts of the following lines:

() 2x — 3y =38 (i) 3x—7y+9=0 (iii)x—%z?,
Find the equation of the locus of a point equidistant from the points
(2, 4) andy-axis.

Find the equation of the locus of a point which is equidistant from the
points (a + b, a — b) and (a — b, a + b).
Is A(a, 0), B(—a, 0) are two fixed points, find the locus of a point P

which moves so that 3|PA| = 2|PB|.

Find the equation of the locus ofa pointP if the sum of squares of its

distances from (1,2) and (3,4) is 25 units.
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Geometry

EXERCISE 9.1 m
Notes

1. (a) /58 (b) J2(a® +b%)

EXERCISE 9.2

1

1. (a) [5’4j () 2,5 2. (1,4

3. (@) @ 6) 4. (3’ 3[4 3
EXERCISE 9.3

2

1. (a) % $q. units (b) 12 sq. units () a? $q. units
2. k= g 3. 80 sq. units 4. % sq. units

EXERCISE 9.4

EXERCISE 9.5

L@ B (i) _% 2. _f3

3. _f3
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Geometry

§ 1. -3 2.5 3. 1 4.
Notes 3

EXERCISE 9.7

w | W\

2. 1 .
3 3 3

EXERCISE 9.8

1. (1) x-intercept =6 y-intercept =2

2
(i) x-intercept = 7 y-intercept = %

(111) x-intercept =2a y-intercept =2b

S o

c
(iv) x-intercept = y-intercept =
(v) x-intercept = —4  y-intercept = 16

(vi) x-intercept = —% y-intercept = 21
EXERCISE 9.9

1. 14x—4y+27=0

2. X2 -8 -4y +20=0
3. 3x2+3)2 -38y+87 =0
4. x-2y=2

5. x2+y2+x-Ty+11=0
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6. 20x% + 36y2 < 405

EXERCISE 9.10

1. () (2,3) (ii) (6, 0)
2. (i) (-6,9) (i) (-1,7)

3. (1, -4)

4. (1,-2)

5 53
5.0) |50 | () (2-43,14243)

6. x> +3xp—-2)>+4x -y -20=0
(il)

7. NG

8. 8x2—-22=9

PRACTICE EXERCISE

(i11) (-4, 8)

. A+B
1. (a) cosec 0 (b) 2sin

2. None of the given sets forms a triangle.

(23]
22

4. (a) 11 sq. unit (b) @ sq. unit

(i) (0, 0)

MODULE - Il
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Coordinate | 6. 21=°¢ 7. 29 sq. unit
Geometry 3
1
mNotes 8. (@ 0 (b) 6
9. y=3 11. Only (ii)
12. (1) 1 (i) 8 (ii1) 1
. 3 ;
14. (i) 4 (i) -3 (i) 3
15. 2 -8y —4x+20=0 16. x—y=0

17. 5x% + 5y — 26ax + 5a% =

18. 2x2+2)2 —8x - 12y +5=0
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Chapter

10

STRAIGHT LINES

LEARNING OUTCOMES

After studying this chapter, student will be able to :

derive equations of a line parallel to either of the coordinate axes;

derive equations in different forms (slope-intercept, point -slope, two

point, intercept, parametric and perpendicular) of a line;
find the equation of a line in the above forms under given conditions;
state that the general equation of first degree represents a line;

express the general equation of a line into
(1) slope-intercept form  (ii) intercept form and

(ii1) perpendicular form;

derive the formula for the angle between two lines with given slopes;
find the angle between two lines with given slopes;

derive the conditions for parallelism and perpendicularity of two lines;
determine whether two given lines are parallel or perpendicular;

derive an expression for fmding the distance of a given point from a

given line;

calculate the distance of a given point from a given line;

M| Straight Lines
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e derive the equation of a line passing through a given point and parallel/

perpendicular to a given line;

write the equation of a line passing through a given point and:
(1) parallel or perpendicular to a given line

(i1) with given x-intercept or y-intercept

(ii1) passing through the point of intersection of two lines; and

e prove various geometrical results using coordinate geometry.

PREREQUISITES

e Congruence and similarity of traingles

INTRODUCTION

In the high school mathematics, the student is familiar with basic con-
cepts of coordinate geometry such as point in a plane distance between two
points, the section formula, the area of the triangle in terms of the coordinates
of its vertices, slope of line standard form equation of a line and condition for

two lines parallel and perpendicular.

Now in this chapter we shall find equations of striaght line in different
forms and various results relating to line in detail and try to solve problems

based on the results.

[V« STRAINGHT LINE PARALLEL TO AN AXIS

If you stand in a room with your arms stretched, we can have a line

drawn on the floor parallel to one side. Another line perpendicular to this line

can be drawn intersecting the first line between your legs.

In this situation the part of the line in front of you and going behind you

is they-axis and the one being parallel to your arms is the x-axis.

The direction part of the y-axis in front of you is positive and behind you

is negative.

Straight Lines Jill
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The direction of the part x-axis to your right is positive and to that to

your left is negative.

Now, let the side facing you be at b units away from you, then the equation

of this edge will be y = b (parallel to x-axis)

where b is equal in absolute value to the distance from thex-axis to the

opposite side.
If » > 0, then the line lies in front of you, i.e., above the x-axis.
If b <0, then the line lies behind you, i.e., below the x-axis.
If b = 0, then the line passes through you and is the x-axis itself.

Again, let the side of the right of you is at ¢ units apart from you, then

the equation of this line will be x = ¢ (parallel to y-axis)

where c is equal in absolute value, to the distance from the y-axis on

your right.
If ¢ > 0, then the line lies on the right of you, i.e., to the right of y-axis.
If ¢ <0, then the line lies on the left of you, i.e., to the left of y-axis
If ¢ = 0, then the line passes through you and is the y-axis.
Example 10.1: Find the equation of the lines passing through (2,3) and is
(1) parallel to x-axis. (i1) parallel to y-axis .
Solution:
(i) The equation of any line parallel to x - axisis y = b
Since it passes through (2,3), hence b =3
The required equation of the line is y =3
(1) The equation of any line parallel to y-axis is x = ¢
Since it passes through (2, 3), hence ¢ = 2

The required equation of the line is x = 2.

MODULE - Il
Coordinate
Geometry

Notes ﬁD

M| Straight Lines




MATHEMATICS | 311 Mathematics Vol-|(TSOSS) |

MODULE - 1
Coordinate

Geometry (i) parallel to x-axis (i) parallel to y-axis

mNotes Solution:

(1) The equation of any line parallel to x-axis is y = b

Example 10.2 : Find the equation of the line passing through (-2, —3) and

Since it passes through (-2, —3), hence -3 = b
.. The required equation of the line is y = -3

(i) The equation of any line parallel to y-axisisx =c¢
Since it passes through (-2, —-3), hence -2 =¢

.. The required cquation of the line is x = -2

EXERCISE 10.1

1. If we fold and press the paper then what will the crease look like
2. Find the slope of a line which makes an angle of

a) 45° with the positive direction of x - axis.

b) 45° with the positive direction of y - axis.

c) 45° with the negative direction of x - axis.
3. Find the slope ofa line joining the points (2, —3) and (3.,4).

4. Determine x so that the slope of the line through the points (2,5) and (7,
x) is 3.

5. Find the equation of the line passing through ( -3, —4) and
a) parallel to x-axis. b) parallel to y-axis.

6. Find the equation of a line passing through (5,-3) and perpendicular to

X-axis.

7. Find the equation of the line passing through ¢3,-7) and perpendicular

to y-axis.

Straight Lines Jill
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«[1&3 DERIVATION OF THE EQUATION OF STRAIGHT
LINE IN VARIOUS STANDARD FORMS

So far we have studied about the inclination, slope of a line and the lines

parallel to the axes. Now the questions is, can we find a relationship between

x and y, where (x, y) is any arbitrary point on the line?

The relationship between x and y which is satisfied by the co-ordinates
of arbitrary point on the line is called the equation of a straight line. The equation

of the line can be found in various forms under the given conditions, such as
(a) When we are given the slope of the line and its intercept on y - axis.

(b) When we are given the slope of the line and it passes through a given

point.
(c) When the line passes through two given points.
(d) When we are given the intercepts on the axes by the line.

(e) When we are given the length of perpendicular from origin on the line
and the angle which the perpendicualr makes with the positive direction

of x-axis.

(f) When the line passes through a given point making an angle a with the

positive direction of x-axis. (Parametric form).

We will discuss all the above cases one by one and try to find the equation

of line in its standard forms.

(A) SLOPE-INTECEPT FORM

Let AB be a straight line making an angle® with x-axis and cutting off
an intercept OD = ¢ from OY.

As the line makes intercept OD = ¢ on y-axis, it is called y-intercept.
Let AB intersect OX' at T.

Take any point P(x, y) on AB. Draw PM L OX.

The OM =x, MP =y

Draw DN 1 MP

MODULE - Il
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From the right-angled triangle DNP, we have

tane:NP:MP—MN Y ,73
OM A
D M N
0
tan 0 = y—OD _ T
M c |y
tan@ = 2 0 l l
X < : - >
Ly =xtan 0 +c A
0 1 vY
tan © = m(slope
(slope) Fig. 10.1

LYy =mx +c

Since, this equation is true for every point on AB, and clearly for no

other point in the plane, hence it represents the equation of the line AB.
Note:

1. Whenc=0and m # 0 = the line passes through the origin and its

equation is y = mx + ¢

2. When ¢ =0andm =0 = the line coincides withx- axis and its equation

is of the form » =20

3. Whenc#0 and m =0 = the line is parallel to x-axis and its equation
is of the form y =c¢

Example 10.3 : Find the equation of a line with slope 4 and y - intercept 0.

Solution: Putting m =4 and ¢ = 0 in the slope intercept form of the equation,
we gety =4 x
This is the desired equation of the line.

Example 10.4 : Detennine the slope and the y-intercept of the line whose

equation is  8x + 3y = 5.

Solution : The given equation of the line is 8x + 3y =15

_ 8.2
YETRTS
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Comparing this equation with the equation y = mx + ¢ (Slope intercept
fonn) we get

8 5
m=—— and ¢=—
3 3

8
Therefore, slope of the line is w3 and its

5
y-intercept is 3

Example 10.5 : Find the equation of the line cutting off an intercept of length
2 from the negative direction of the axis ofy and making an angle of 12(0° with

the positive direction x-axis. Y

Solution: From the slope inter-

cept fonn of the line

y = xtan120° +(=2)
=—+\3x-2
or y+\/§x+2=O

Here m =tan 120° and ¢

= -2, because the intercept is cut
on the negative side of y-axis.

(b) POINT -SLOPE FORM
Here we will find the equation ' f
of a line passing through a given point

A(x,, y,) and having the slope m. A G

LetP(x, y) be any point other
than A on given the line. Slope
(tan 0) of the line joining A(x, y,)

and P (x,y) is given by Fig. 10.3
ig. 10.

B Straight Lines
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m=tan@ =221
x_xl

The slope of the lineAP is given to be m.

_Y~N

.. The equation of the required line is
Y=y =mx-x)

Example 10.6 : Determine the equation of the line passing through the point

2
(2, —1) and having slope 3

Solution : Putting x, =2, y =-1and m= 2 in the equation of the point-
3

slope form of the line we get

y=(-D=2(x-2)

= y+l= %(x—Z)

_2..7
=3T3

. which is the required equation of the line.

(C) TWO POINT FORM
Let A(x,,y,) and B(x,, y,)be two given distinct points.

Slope of the line passing through these points is given by

m=22"1 (x, #x))
Xy =X

From the equation of line in point slope form, we get

V=)
y=y =" (x—x)
Xy =X

which is the required equation of the line in two-point form.
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Example 10.7 : Find the equation of the line passing through (3, —7) and
(-2, -5).

Solution : The equation of a line passing through two points (x,, y,) and

(xp »,)
Y2=h
-y =——((x-x -
Y=y, Y —x ( 1) ..(1)
Since x, =3,y =-7, and x, = -2, y, = —5equation (i) becomes,
-5+7
+7 = x-3
y S 503
2
or y+7= _—S(x—3)
or 2x+ 5y +29=0

(d) INTERCEPT FORM

We want to find the equation
of a line which cuts off given
intercepts on both the co-ordinate

axes

Let PQ be a line meeting

x-axis in A and y-axis in B. Let

OA =4, OB = b.

Then the co-ordinates of A Y
and B are («,0) and (0, b) Fig. 10.4

respectively.

The equation of the line joining A and B is

y=0= b_o(x—a)
0-a
or y=""(-a) or T=—+1
a a
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or X4+2=1
a b

This is the required equation of the line having intercepts: and b o